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EXECUTIVE SUMMARY 

This investigation developed simplified procedures for the seismic analysis and design of pile 

supported wharves and piers in Marine Oil and LNG Terminals. A simplified coefficient-based 

approach is proposed for estimating seismic displacement demand for regular structures. This 

approach is adopted from the performance-based analysis procedure recently approved for 

buildings in the ASCE/SEI 41-06 standard (ASCE, 2007). A modal pushover analysis (MPA) 

approach is proposed for irregular structures. The MPA procedure accounts for the higher-mode 

effects that are important in irregular structures (Chopra and Goel, 2004). The acceptability of 

piles in terms of displacement ductility limitation, instead of the material strain limitation, is 

proposed. For this purpose, simplified expressions for estimating displacement ductility capacity 

of piles are recommended. These expressions are calibrated such that the material strain limits in 

Title 24, California Code of Regulations, Chapter 31F, informally known as the Marine Oil 

Terminal Engineering and Maintenance Standards (MOTEMS), would not be exceeded if the 

displacement ductility demand is kept below the proposed displacement ductility capacity. These 

simplified procedures can be used as an alternative to the procedures currently specified in the 

MOTEMS. The simplified procedures can be used for preliminary design or as a quick check on 

the results from detailed nonlinear analyses. The more sophisticated analysis methodology can 

still be used for final design.  

The following is a summary of the procedures to estimate displacement demands and 

capacities for pile-supported wharves and piers.  

DISPLACEMENT DEMAND 

Regular Structures 

It is proposed that the seismic displacement demand in a regular structure (MOTEMS 2007) be 

estimated from 

 
2
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π
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in which AS  is the spectral acceleration of the linear-elastic system at vibration period, T . The 

coefficient 1C  is given by 
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in which a  is a site dependent constant equal to 130 for Site Class A and B, 90 for Site Class C, 

and 60 for Site Class D, E, and F (definition of Site Class is available in ASCE/SEI 41-06 

standard), and R  is the ratio of the elastic and yield strength of the system and is defined as 

 A

y

S WR
g V

=  (3) 

where W  is the seismic weight of the system, yV  is the yield force (or base shear) of the system, 

and g  is the acceleration due to gravity. The coefficient 2C  is given by 

 2
2

1.0;                           0.7s

1 11 ;     0.7s 
800

T
C R T

T

>⎧
⎪= ⎨ −⎛ ⎞+ ≤⎪ ⎜ ⎟

⎝ ⎠⎩

 (4) 

Use of Equation (1) to compute the displacement demand should be restricted to systems 

with maxR R≤  where maxR  is given by 

 max 4

t
ed

y

R
α −

Δ
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Δ

 (5) 

in which dΔ  is the smaller of the computed displacement demand, dΔ , from Equation (1) or the 

displacement corresponding to the maximum strength in the pushover curve, yΔ  is the yield 

displacement of the idealized bilinear force-deformation curve, t  is a constant computed from 

 ( )1 0.15lnt T= +  (6) 

and eα  is the effective post-elastic stiffness ratio computed from 

 ( )2e P Pα α λ α α−Δ −Δ= + −  (7) 

where λ  is a near-field effect factor equal to 0.8 for sites that are subjected to near-field effects 
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and 0.2 for sites that are not subjected to near field effects. The near field effects may be 

considered to exist if the 1 second spectral value, 1S , at the site for the maximum considered 

earthquake is equal to or exceeds 0.6g. The P-Delta stiffness ratio, Pα −Δ , and the maximum 

negative post-elastic stiffness ratio, 2α , in Equation (7) are estimated from the idealized force-

deformation curve. 

Irregular Structures 

A modal pushover analysis (MPA) procedure is proposed to estimate displacement demands in 

irregular Marine Oil and LNG Terminal structures (MOTEMS 2007). The following is a step-by-

step summary of the MPA procedure: 

1. Compute the natural frequencies, nω  and modes, nφ , for linearly elastic vibration of the 

irregular Marine Oil and LNG Terminal structure. 

2. Select a reference point where the displacement, rnu , is to be monitored in the selected 

direction of analysis during the pushover analysis. Ideally, this reference point should be the 

location on the structure with largest value of rnφ  in the selected direction of analysis. 

3. For the nth-mode, develop the pushover curve, bn rnV u− , for the nth modal force distribution, 

*
n n= Ms φ , where M  is the mass matrix of the structure, and nφ  is the nth mode shape. The 

base shear bnV  should be monitored in the same direction as the direction of the selected 

reference point displacement rnu .  

4. Convert the bn rnV u−  pushover curve to the force-displacement, sn n nF L D− , relation for the 

nth -“mode” inelastic SDF system by utilizing *
sn n bn nF L V M=  and n rn n rnD u φ= Γ  in which 

rnφ  is the value of nφ  at the reference point in the direction under consideration, 

( )2* T T
n n n nM = M Mφ ι φ φ  is the effective modal mass, and T T

n n n nΓ = M Mφ ι φ φ  with ι  equal to 

the influence vector. The influence vector ι  is a vector of size equal to the total number of 

degrees of freedom. For analysis in the x-direction, the components of ι  corresponding to x-

degree-of-freedom are equal to one and remaining components equal to zero. Similarly the 
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components of ι  corresponding to y-degree-of-freedom are equal to one and remaining 

components equal to zero for analysis in the y-direction. 

5. Idealize the force-displacement, sn n nF L D− , curve as a bilinear curve and compute the yield 

value sny nF L . 

6. Compute the yield strength reduction factor, ( )A sny nR S F L= . 

7. Compute the peak deformation n dD = Δ  of the nth-“mode” inelastic SDF system defined by 

the force-deformation relation developed in Step 4 and damping ratio nζ , from Equation (1). 

The elastic vibration period of the system is based on the effective slope of the sn n nF L D−  

curve, which for a bilinear curve is given by ( )1/ 2
2n n ny snyT L D Fπ= . 

8. Calculate peak reference point displacement rnu  associated with the nth-“mode” inelastic 

SDF system from rn n rn nu Dφ= Γ . 

9. Push the structure to the reference point displacement equal to rnu  and note the values of 

desired displacement noδ . 

10. Repeat Steps 3 to 9 for all significant modes identified. 

11. Combine the peak modal displacement, noδ , by an appropriate modal combination rule, e.g., 

CQC, to obtain the peak dynamic response, oΔ . 

DISPLACEMENT CAPACITY 

It is proposed that the displacement capacity of piles in Marine Oil and LNG Terminals be 

estimated from  

 c yμΔΔ = Δ  (8) 

where yΔ  is the yield displacement of the pile and μΔ  is the displacement ductility capacity of 

the pile. Following are the recommendations that have been developed for the yield displacement 

and displacement ductility of piles commonly used in Marine Oil and LNG Terminals. These 

recommendations have been developed to ensure that the material strains in the pile at its 



 

 v

displacement capacity remain within the limits specified in the MOTEMS (2007).  

The procedure to estimate the displacement capacity is intended to be a simplified procedure 

for either initial design of piles or for checking results from more complex nonlinear finite 

element analysis. The recommendations presented in this report are limited to: (1) piles with long 

freestanding heights (length/diameter > 20) above the mud line; (2) piles with transverse 

volumetric ratio greater than 0.5%; and (3) piles in which the displacement demand has been 

estimated utilizing equivalent-fixity approximation. Results form this investigation should be 

used with caution for parameters or cases outside of those described above. 

Piles with Full-Moment- or Pin-Connection to the Deck Slab 

The recommended values of displacement ductility capacity of piles with full-moment-

connection or pin-connection to the deck slab are  

Design Earthquake 
Level 

Hinge Location Reinforced-
Concrete Piles 

Hollow-Steel 
Piles 

In-Ground 1.75  1.2 
Level 1 

Pile-Deck 1.75  1.2 

In-Ground 2.5 2.75 
Level 2 

Pile-Deck 5.0 2.75 

 

The yield displacement of the pile may be estimated either from idealized pushover curve 

developed from the nonlinear static pushover analysis or may be estimated from 

 

2

2
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6
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 (9) 

in which yM  is the section yield moment and eEI  is the effective value of EI  that can be 

estimated from the section moment-curvature analysis. Note that yM  is not the section moment 

at first-yield but the effective yield moment estimated from bilinear idealization of the moment-

curvature relationship. 
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Piles with Dowel-Connection to the Deck Slab 

Simplified formulas are proposed for estimating displacement ductility capacity of piles with 

dowel-connection, such as hollow-steel piles or prestressed concrete piles connected to the deck 

slab with dowels. The following is a step-by-step summary of the procedure to implement these 

formulas to estimate displacement capacity of such piles: 

1. Establish the axial load, P , on the pile. 

2. Estimate the pile length based on equivalent-fixity assumption. 

3. Select an appropriate design level – Level 1 or Level 2 – and establish various strain limits 

for the selected design level. 

4. Develop the moment-rotation relationship of the dowel-connection using the procedure 

described in Chapter 8 of this report. 

5. Determine rotational stiffness, kθ , yield moment, ,CyM , and yield rotation, ,Cyθ  of the 

dowel-connection from the moment-rotation relationship developed in Step 4. 

6. Establish the rotation of the dowel-connection, Lθ , and corresponding ductility, 

,CL yθμ θ θ= , when strain in the outer-most dowel of the connection reaches the strain limit 

established in Step 3 for the selected design level.  

7. Conduct the moment-curvature analysis of the pile section with appropriate axial load and 

idealize the moment-curvature relationship by a bi-linear curve.  

8. Compute the effective, eEI , and effective yield moment, y,PM , from the pile moment-

curvature relationship. Note that eEI  is equal to initial elastic slope and y,PM  is the yield 

value of the moment of the idealized bi-linear moment-curvature relationship. For steel piles, 

eEI  may be computed from section properties and material modulus, and y,PM  may be 

approximated as ( )3 3
y,P 6y o iM f d d− .  

9. Estimate the yield curvature, ,P ,P eEIy yMφ = . 
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10. Establish the curvature of the steel pile, Lφ , and corresponding curvature ductility, 

,PL yφμ φ φ= , when material strain in the pile section reaches the strain limit established in 

Step 3 for the selected design level. 

11. Select the value of ρ  which defines the length of the plastic hinge as a fraction of the 

“effective” length of the pile. The recommended value for hollow-steel piles with dowel-

connection is 0.03ρ =  for Level 1 design and 0.075ρ =  for Level 2; and for prestressed 

concrete pile with dowel-connection for both design levels is 0.05ρ = . 

12. Compute the dimensionless parameters: ,P ,Cy yM Mη = , and eEI k Lθβ = . 

13. Compute the normalized value of the plastic hinge length: ( ) ( )* 1PL ρη η= + . 

14. Compute the yield displacement which corresponds to first effective yielding in the 

connection as: ( ),C ,C 1 4y y Lθ β βΔ = + 6  

15. Compute the displacement ductility for yielding in the connection as 

( ) ( )1 4 1 4θμ βμ βΔ = + +  if θμ  computed in Step 6 is less than or equal to ( )1 2η β−  

otherwise ( ) ( )2 6 1 4θμ η βμ βΔ = − + + . 

16. Compute displacement ductility for yielding in the pile as 

( ) ( ) ( )( )( ) ( )* *2 1 1 4 6 1 2 1 1 4p pL L φμ η β η μ βΔ = − + + − − +  

17. Establish the displacement ductility capacity as lower of the values computed in Steps 15 and 

16. 

18. Compute the displacement capacity of the pile as product of the yield displacement computed 

in Step14 and the displacement ductility capacity computed in Step 17. 

The recommended value of displacement ductility for piles with full-moment-connection or 

the simplified formulas for piles with dowel-connection have been shown to provide results that 

are “accurate” enough for most practical applications. However, it may be useful to verify these 

recommendations from experimental studies. 
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1. INTRODUCTION 

Seismic design of marine oil terminals in California is governed by 2007 Title 24 California 

Code of Regulations (CCR), Part 2, California Building Code, Chapter 31F (Marine Oil 

Terminals). These regulations are commonly known as the “Marine Oil Terminal Engineering 

and Maintenance Standard” (MOTEMS). The MOTEMS describe the acceptable methods of 

seismic analysis and provide the specific performance criteria for two levels of earthquake 

motions to be used in the seismic assessment. The return period of the design earthquake for 

each level depends on the risk level, which is a function of the oil susceptible to spillage at any 

given time. For example, Level 1 and Level 2 design earthquakes for high risk terminals 

correspond to return periods of 72 and 475 years, respectively. The performance goal for Level 1 

earthquake is no or minor damage without interruption in service or with minor temporary 

interruption in service. The performance goal for Level 2 earthquake is controlled inelastic 

behavior with repairable damage resulting in temporary closure of service, restorable within 

months and the prevention of a major oil spill (24 CCR 3104F.2.1). This is the formal short form 

of the above cited regulation and specifies a particular section (24 CCR 3104F.2.1) of the 

California Code of Regulations. It will be used throughout this document along with the informal 

“MOTEMS” abbreviation. 

The MOTEMS is currently being used for new construction in the Ports of Los Angeles and 

Long Beach. In addition, the MOTEMS has been referenced in the FEMA 450 document (BSSC, 

2003). The MOTEMS has also become the approved methodology for the seismic assessment of 

US military wharf/pier facilities in high seismic areas (Department of Defense, 2005).  

As with marine oil terminals, LNG receiving terminals are considered liquid hydrocarbons 

reception terminals by the California State Lands Commission (CSLC), and as such fall under 

the Lempert-Keen-Seastrand Oil Spill and Response Act of 1990. The “Act” states that the 

“commission (CSLC) shall adopt rules, regulations, guidelines…, performance standards… for 

all existing and proposed marine terminals within the state…”. It is through this “Act” that the 

CSLC is developing standards for LNG terminals, and in this case mutually applicable to oil 

terminals. The effort described in this report is through funding obtained by the CSLC for 

development of standards for LNG terminals. 
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The MOTEMS seismic analysis requires that the seismic displacement demand in marine oil 

terminal structures be determined using nonlinear static procedures except for irregular structures 

(24 CCR 3104F.1.4) with high or moderate seismic risk classification (see 24 CCR 3104F2.3.2 ). 

A linear modal procedure is required for irregular structures with high or moderate seismic risk 

classification. The analysis method specified in the MOTEMS is based on the concept of 

equivalent linearization presented by Priestley et al. (1996). The seismic design (or acceptability 

criteria) involves making sure that the material strains at the seismic displacement demand not 

exceed certain prescribed values.  

The primary objective of this investigation is to develop simplified analysis and design 

procedures for pile supported wharves and piers for Marine Oil and LNG Terminals. For this 

purpose, a simplified coefficient-based approach is proposed for estimating seismic displacement 

demand for regular structures. This approach is adopted from the performance-based analysis 

procedure recently approved for buildings in the ASCE/SEI 41-06 standard (ASCE, 2007). A 

modal pushover analysis (MPA) approach is proposed for irregular structures. The MPA 

procedure accounts for the higher-mode effects that are important in irregular structures (Chopra 

and Goel, 2004). The acceptability of piles in terms of displacement ductility limitation, instead 

of the material strain limitations, is proposed. For this purpose, simplified expressions for 

estimating displacement ductility capacity of piles are recommended. These expressions are 

calibrated such that the material strain limits in the MOTEMS would not be exceeded if the 

displacement ductility demand is kept below the proposed displacement ductility capacity. These 

simplified procedures can be used as an alternative to the procedures currently specified in the 

MOTEMS. 

This report is organized as follows:  

Chapter 2 presents the development of a simplified procedure for estimating seismic 

displacement demand in regular and irregular structures.  

Chapter 3 describes the equivalent fixity model utilized in developing the simplified seismic 

acceptability criteria.  

Chapter 4 summarizes the approach in the current MOTEMS for seismic evaluation of piles.  
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Chapter 5 presents the proposed approach to estimate the displacement ductility capacity of 

piles.  

Chapters 6 and 7 present development and evaluation of simplified expressions for the 

displacement ductility capacity of reinforced concrete and hollow steel piles, respectively, with 

full-moment connection to the concrete deck.  

Chapter 8 discusses the behavior of partial-moment connections of hollow steel and 

prestressed concrete piles to the concrete deck.  

Chapter 9 presents the theoretical development of simplified expressions for estimating 

displacement ductility demands in piles with partial-moment connections.  

Chapters 10 and 11 evaluate these simplified expressions for hollow steel and prestressed 

concrete piles, respectively. 
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2. ESTIMATION OF DISPLACEMENT DEMANDS 

The MOTEMS requires that the seismic displacement demand in marine oil terminal structures 

be determined using nonlinear static procedures except for irregular structures with high or 

moderate seismic risk classification (MOTEMS, 2007: Section 3104F2.3.2). A linear modal 

procedure is required for irregular structures with high or moderate seismic risk classification. 

2.1 REGULAR STRUCTURES 

2.1.1  Current MOTEMS Procedure  

The MOTEMS (2007) specifies that the displacement demand, dΔ , be computed from 

 
2

24d A
TS
π

Δ =  (2.1) 

in which AS  is the spectral response acceleration corresponding to the vibration period T  of the 

structure, with a 5% damping ratio. The spectral acceleration, AS , is computed from United 

States Geological Survey (USGS) maps, or from site-specific probabilistic seismic hazard 

analysis (PSHA).  

Equation (2.1) assumes that the deformation demand in a system that is deformed beyond 

the linear elastic limit is equal to that in a linear-elastic system. It is well known that for short 

period systems, this equal displacement rule may not apply; deformation of a nonlinear system 

may be larger than that of a linear system. For such systems, nonlinearity in the force-

deformation relationship must be considered to compute the displacement demand. 

Therefore, the MOTEMS requires that a refined analysis be used to calculate the 

displacement demand if the vibration period of the structure T  is less than period oT  which 

corresponds to the period at which constant acceleration and constant velocity regions of the 

design spectrum intersect. The refined analysis (MOTEMS, 2007: Section  3104F.2.3.2.5) 

utilizes the nonlinear force-deformation behavior of the structure developed from nonlinear static 

pushover analysis and is based on the concept of equivalent linearization presented by Priestley 

et al. (1996). 
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2.1.2  Procedures to Compute Response of Single-Degree-of-Freedom (SDF) Systems 

An alternative approach to the equivalent linearization method is the coefficient method in which 

the deformation of the inelastic SDF system is computed by multiplying the displacement of the 

elastic SDF system by a coefficient as follows: 

 i R eCΔ = Δ  (2.2) 

where eΔ  is the deformation of the elastic SDF system, iΔ  is the deformation of the inelastic 

SDF system, and RC  is the coefficient that converts displacement of the elastic SDF system to 

displacement of the inelastic SDF system. Several alternative definitions of the coefficient RC  

are available. The following is a brief review of the ones which are commonly used. 

Δ

A

Δ
e

A
e

Δ
y

A
y

Δ
i

R

 
Figure 2.1. Force-deformation properties of an inelastic and elastic SDF system. 

Figure 2.1 shows a nonlinear inelastic SDF system with a bilinear force-deformation 

relationship. The yield strength (or capacity) of the system is yV  and its yield displacement is 

yΔ . The yield strength yV  is related to the pseudo-acceleration (or spectral acceleration) at yield 

level, yA , and the seismic weight, W , as y yV A W= . If the system were to remain elastic, the 

design force would be e eV A W=  with eA  being the spectral acceleration of the elastic SDF 

system. The yield strength reduction factor, R , is defined as the ratio of the elastic level force 

and the yield strength of the inelastic SDF system. Thus R  is given as 

 e e

y y

V AR
V A

= =  (2.3) 
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Note that the yield strength reduction factor, R , differs from the response modification 

coefficient, R , generally used in the force-based design procedures of building [for example see 

ASCE/SEI 7-05 (ASCE, 2005)]: the yield strength reduction factor in Equation (2.3) considers 

the effects of system ductility alone whereas the response modification factor in force-based 

design accounts for other factors, such as type and past performance of lateral load resisting 

systems, over strength, etc., in addition to the system ductility. 

The coefficient RC  is generally defined as a function of vibration period, T , yield reduction 

factor, R , and a few other factors. Nassar and Krawinkler (1991) defined RC  as 

 ( )1 11 1c
RC R

R c
⎡ ⎤= + −⎢ ⎥⎣ ⎦

 (2.4) 

where the constant c  is defined by 

 
1

a

a

T bc
T T

= +
+

 (2.5) 

with constants 1a =  and 0.42b =  for 0%α = , 1a =  and 0.37b =  for 2%α = , and 0.8a =  and 

0.29b =  for 10%α = . The parameter α  is defined as the ratio of the post-yield stiffness and 

initial elastic stiffness expressed as a percentage value. Ruiz-Garcia and Miranda (2003) defined 

the RC  as 

 
( )

( )1 11 1R b
s

C R
ca T T

⎡ ⎤
= + + −⎢ ⎥

⎢ ⎥⎣ ⎦
 (2.6) 

with sT  being the site characteristic period selected as 0.75 for site B, 0.85 for site C, and 1.05 

for site D; and constants 50a = , 1.8b = , and 55c = . Chopra and Chintanapakdee (2004) 

defined RC  as 

 ( )
1

11 1
d

R R b
s

a TC L c
R T

−

−
⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= + − + + ⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
 (2.8) 

in which 

 1 11R
RL

R α
−⎛ ⎞= +⎜ ⎟

⎝ ⎠
 (2.9) 
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sT  is the period corresponding to the transition between constant pseudo-acceleration and 

constant pseudo-velocity regions of the design spectrum, 61a = , 2.4b = , 1.5c = , and 2.4d = . 

The RC  is also defined in several building design guidelines. For example, FEMA-356 

(ASCE, 2000), defines RC  as 

 1 2 3RC C C C=  (2.10) 

where 1C  is the modification factor to relate a maximum displacement of nonlinear elastic-

perfectly-plastic SDF system to displacement of elastic SDF system given by 

 1

1.0; for 
1 11 1.5; for 

s

s
s

T T
C T T T

R R T

≥⎧
⎪= ⎨ ⎛ ⎞⎛ ⎞+ − ≤ <⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩

 (2.11) 

2C  is the modification factor to represent effects of pinched hysteretic shape, stiffness 

degradation, and strength deterioration (Table 2.1), and 3C  is the modification factor to represent 

P-Delta effects given by 

 ( )3/ 2

3

1
1

R
C

T
α −

= +  (2.12) 

Table 2.1. Values of modification factor 2C  in FEMA-356 (ASCE 2000). 
 

0.1 sT ≤  sT T≥  Structural 
Performance Level Framing 

Type 1 
Framing 
Type 2 

Framing 
Type 1 

Framing 
Type 2 

Immediate Occupancy 1.0 1.0 1.0 1.0 
Life safety 1.3 1.0 1.1 1.0 
Collapse Prevention 1.5 1.0 1.2 1.0 

 
The coefficients in FEMA-356 were re-examined and an improved version was proposed in 

FEMA-440 (ATC, 2005). This proposal has also been adopted in ASCE/SEI 41-06 standard 

(ASCE, 2007). The RC  in FEMA-440 and ASCE/SEI 41-06 is defined as 

 1 2RC C C=  (2.13) 

where 1C  is the modification factor to relate maximum displacement of a nonlinear elastic-

perfectly-plastic SDF system to displacement of an elastic SDF system defined by 
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 1 2

1.0;                          1.0s
11.0 ;     0.2s< 1.0s

11.0 ;            0.2s
0.04

T
RC T
aT
R T

a

⎧
⎪ >
⎪ −⎪= + ≤⎨
⎪

−⎪ + ≤⎪⎩

 (2.14) 

with a  = 130 for Site Class B, 90 for Site Class C, and 60 for Site Class D. and 2C  is the 

modification factor to represent effects of cyclic degradation in stiffness and strength given by 

 2
2

1.0;                           0.7s

1 11 ;     0.7s 
800

T
C R T

T

>⎧
⎪= ⎨ −⎛ ⎞+ ≤⎪ ⎜ ⎟

⎝ ⎠⎩

 (2.15) 
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Figure 2.2. Idealized force-deformation curve for nonlinear static analysis. 

The provisions of FEMA-440 and ASCE/SEI 41-06 can be used provided that R  does not 

exceed the limiting value given by 

 ( )max ;    1.0 0.15ln
4

h
ed

y

R h T
α −

Δ
= + = +
Δ

 (2.16) 

in which dΔ  is the deformation corresponding to peak strength, yΔ  is the yield deformation, and 

eα  is the effective negative post-yield slope given by  

 ( )2e P Pα α λ α α−Δ −Δ= + −  (2.17) 

where 2α  is the negative post-yield slope ratio defined in Figure 2.2, Pα −Δ  is the negative slope 
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ratio caused by P − Δ  effects, and λ  is the near-field effect factor given as 0.8 for 1 0.6S ≥  and 

0.2 for 1 0.6S <  ( 1S  is defined as the 1-second spectral acceleration for the Maximum 

Considered Earthquake). The 2α  slope includes P − Δ  effects, in-cycle degradation, and cyclic 

degradation.  

Finally, FEMA-450 (BSSC, 2003) defines RC  as 

 ( )
1.0; for 

11 1 ; for 

s

R s
s

T T
C R T

T T
R T

>⎧
⎪= −⎡ ⎤⎨ + ≤⎢ ⎥⎪

⎣ ⎦⎩

 (2.18) 
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Figure 2.3. Comparison of RC  from various recommendations. Results are for 3R =  and site 
class B. 

Figure 2.3 compares the RC  values from the aforementioned recommendations. This 

comparison indicates that all recommendations lead to essentially identical values of RC  for 

periods longer than 1 sec. The values due to FEMA-356 and FEMA-450 differ significantly from 

those due to the remaining recommendations primarily for periods shorter than 0.5 sec. 

2.1.3 Proposed Alternate Displacement Demand Procedure for Regular Structures 

Presented here is an alternative procedure for estimating the seismic displacement demand of 

regular structures with period T  less than period oT  that can be idealized as a single-degree-of-

freedom (SDF) system. This procedure utilizes the nonlinear force-deformation behavior of the 

structure developed from nonlinear static pushover analysis. The computation of the 
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displacement demand is adopted from the procedure recommended in the FEMA-440 document 

(ATC, 2005) and ASCE/SEI 41-06 standard (ASCE 2007). Although this procedure has been 

described previously in Section 2.1.2, it is re-organized here to be compatible with the current 

MOTEMS procedure. The proposed alternative procedure involves estimating the displacement 

demand in a nonlinear SDF system from 

 
2

1 2 24d A
TC C S
π

Δ =  (2.19) 

in which 1C  and 2C  are the coefficients that convert displacement demand of a linear-elastic 

SDF system to displacement demand of nonlinear SDF system. 

The coefficient 1C  is given by 

 1 2

1.0;                          1.0s
11.0 ;     0.2s< 1.0s

11.0 ;            0.2s
0.04

T
RC T
aT
R T

a

⎧
⎪ >
⎪ −⎪= + ≤⎨
⎪

−⎪ + ≤⎪⎩

 (2.20) 

in which a  is a site dependent constant equal to 130 for Site Class A and B, 90 for Site Class C, 

and 60 for Site Class D, E, and F; and R  is the ratio of the elastic to the yield strength of the 

system and is defined as 

 A

y

S WR
g V

=  (2.21) 

in which AS  is the spectral acceleration used in Equation (2.1), W  is the seismic weight of the 

system, yV  is the yield force (or base shear) of the system, and g  is the acceleration due to 

gravity. The coefficient 2C  is given by 

 2
2

1.0;                           0.7s

1 11 ;     0.7s 
800

T
C R T

T

>⎧
⎪= ⎨ −⎛ ⎞+ ≤⎪ ⎜ ⎟

⎝ ⎠⎩

 (2.22) 

Equation (2.19) can be used to compute the displacement demand for systems in which 

maxR R≤  where maxR  is given by 
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 max 4

t
ed

y

R
α −

Δ
= +
Δ

 (2.23) 

in which dΔ  is smaller than the computed displacement demand, dΔ , from Equation (2.19) or 

the displacement corresponding to the maximum strength in the pushover curve, yΔ  is the yield 

displacement of the idealized bilinear force-deformation curve, t  is a constant computed from 

 ( )1 0.15lnt T= +  (2.24) 

and eα  is the effective post-elastic stiffness ratio computed from 

 ( )2e P Pα α λ α α−Δ −Δ= + −  (2.25) 

where λ  is a near-field effect factor equal to 0.8 for sites that are subjected to near-field effects 

and 0.2 for sites that are not subjected to near field effects. The near field effects may be 

considered to exist if the 1 second spectral value, 1S , at the site for the maximum considered 

earthquake is equal to or exceeds 0.6g. The P-Delta stiffness ratio, Pα −Δ , and the maximum 

negative post-elastic stiffness ratio, 2α , in Equation (2.25) are estimated from the idealized 

force-deformation curve in Figure 2.2. The Pα −Δ  needed in Equation (2.25) may be estimated by 

conducting pushover analysis with and without P-Delta effects.  

2.2 IRREGULAR STRUCTURES 

2.2.1 Current MOTEMS Procedure  

The current MOTEMS procedure requires that the seismic displacement demand in irregular 

concrete or steel structures with high or moderate seismic risk classification be computed from 

linear modal analysis. This procedure assumes that the displacement demand in irregular 

structures deformed beyond the linear elastic range may be approximated by that of a linear 

elastic structure. For irregular concrete and steel structures with low seismic risk, the 

displacement demand must be computed by a nonlinear static procedure; the nonlinear static 

procedure for such irregular structures appears to be similar to that for regular structures. 
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2.2.2 Proposed Nonlinear Static Procedure for Irregular Structures 

Presented here is a rational nonlinear static procedure for estimating displacement demand in 

irregular structures. Proposed initially by Chopra and Goel (2004) to estimate seismic demands 

in unsymmetric-plan buildings, this procedure has been slightly modified to estimate 

displacement demands in irregular Marine Oil and LNG Terminals. The following is a step-by-

step summary of this procedure. 

1. Compute the natural frequencies, nω  and modes, nφ , for linearly elastic vibration of the 

irregular Marine Oil and LNG Terminal. 

2. Select a reference point where the displacement, rnu , is to be monitored in the selected 

direction of analysis during the pushover analysis. Ideally, this reference point should be the 

location on the structure with largest value of rnφ  in the selected direction of analysis. 

3. For the nth-mode, develop the pushover curve, bn rnV u− , for the nth modal force distribution, 

*
n n= Ms φ , where *

ns  is the vector of lateral forces used during the pushover analysis, M  is 

the mass matrix of the structure, and nφ  is the nth mode shape. The base shear bnV  should be 

monitored in the same direction as the direction of selected reference point displacement rnu .  

4. Convert the bn rnV u−  pushover curve to the force-displacement, sn n nF L D− , relation for the 

nth -“mode” inelastic SDF system by utilizing *
sn n bn nF L V M=  and n rn n rnD u φ= Γ  in which 

rnφ  is the value of nφ  at the reference point in the direction under consideration, 

( )2* T T
n n n nM = M Mφ ι φ φ  is the effective modal mass, and T T

n n n nΓ = M Mφ ι φ φ  with ι  equal to 

the influence vector. The influence vector ι  is a vector of size equal to the total number of 

degrees of freedom. For analysis in the x-direction, the components of ι  corresponding to x-

degree-of-freedom are equal to one and the remaining components equal to zero. Similarly 

the components of ι  corresponding to y-degree-of-freedom are equal to one and the 

remaining components equal to zero for analysis in the y-direction. 

5. Idealize the force-displacement, sn n nF L D− , curve as a bilinear curve and compute the yield 

value sny nF L . 
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6. Compute the yield strength reduction factor, ( )A sny nR S F L= . 

7. Compute the peak deformation n dD = Δ  of the nth-“mode” inelastic SDF system defined by 

the force-deformation relation developed in Step 4 and damping ratio nζ , from Equation 

(2.19). The elastic vibration period of the system is based on the effective slope of the 

sn n nF L D−  curve, which for a bilinear curve is given by ( )1/ 2
2n n ny snyT L D Fπ= . 

8. Calculate peak reference point displacement rnu  associated with the nth-“mode” inelastic 

SDF system from rn n rn nu Dφ= Γ . 

9. Push the structure to reference point displacement equal to rnu  and note the values of desired 

displacement noδ . 

10. Repeat Steps 3 to 9 for all significant modes identified. 

11. Combine the peak modal displacement, noδ , by an appropriate modal combination rule, e.g., 

CQC, to obtain the peak dynamic response, oΔ . 



 

 14

3. SIMPLIFYING ASSUMPTION 

Figure 3.1b shows the mathematical model of a free-head pile of Figure 3.1a supported on 

bedrock (or other competent soil) and surrounded by soil between the bedrock and mud line. In 

this model, the pile is represented by beam-column elements and soil by Winkler reaction 

springs connected to the pile between the bedrock and the mud line (Priestley et al., 1996). The 

properties of the beam-column element are established based on the pile cross section whereas 

properties of the reaction springs are specified based on geotechnical data (e.g., see Priestley et 

al., 1996; Dowrick, 1987). Figure 3.1c shows the height-wise distribution of bending moment 

under lateral load applied to the pile tip. Note that the maximum bending moment occurs slightly 

below the mud line at a depth equal to mD , typically denoted as the depth-to-maximum-moment 

below the mud line (Figure 3.1c). Lateral displacement at the pile tip can be calculated based on 

this bending moment distribution or from a discrete element model implemented in most 

commonly available computer programs for structural analysis. 
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Figure 3.1. Simplified model of the pile-soil system for displacement capacity evaluation: (a) 
Pile supported on bedrock; (b) Mathematical model of the pile; (c) Height-wise variation of 
bending moment; and (d) Equivalent fixity model for displacement calculation. 

An alternative approach to modeling soil flexibility effects of the pile with discrete soil 

springs is the effective fixity approach (Priestley et al., 1996: Sec. 4.4.2; Dowrick, 1987: Sec. 

6.4.5.3). In this approach (Figure 3.1d), the depth-to-fixity, fD , is defined as the depth that 

produces in a fixed-base column with soil removed above the fixed base the same top-of-the-pile 

lateral displacement under the lateral load, F , as that in the actual pile-soil system (Priestley et 

al., 1996). Both the axial load, P , and top-of-the-pile moment, M (not shown in Figure 3.1d) 
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need to be considered. The depth-to-fixity, which depends on the pile diameter and soil 

properties, is typically provided by the geotechnical engineer, estimated from charts available in 

standard textbooks on the subject (e.g., Priestley, et al., 1996; Dowrick, 1987) or from 

recommendations in several recent references (e.g., Chai, 2002; Chai and Hutchinson, 2002). 

The equivalent fixity model is typically used for estimating displacement of piles that 

remain within the linear-elastic range. For piles that are expected to be deformed beyond the 

linear-elastic range, however, nonlinear analysis of the discrete soil spring model approach of 

Figure 3.1b is recommended (Priestley et al., 1996: Sec. 4.4.2) because the plastic hinge forms at 

the location of the maximum bending moment, i.e., at the depth-to-maximum-moment, mD , and 

not at the depth-to-fixity, fD . A recent investigation has developed equations for estimating 

lateral displacement of equivalent fixity model of the nonlinear soil-pile system by recognizing 

that the plastic hinge forms at the depth-to-maximum-moment (Chai, 2002); expressions for 

estimating displacement ductility capacity of pile-soil system are also available (Priestley et al., 

1996: Sec. 5.3.1). However, calculation of lateral displacement capacity of nonlinear soil-pile 

systems using these approaches requires significant information about the soil properties.  

This investigation uses a simplifying assumption that the equivalent fixity model may 

directly be used to estimate lateral displacement capacity of nonlinear piles. Clearly, such an 

approach indicates that the plastic hinge would form at the depth-to-fixity, fD , which differs 

from the actual location at the depth-to-maximum-moment, mD . It is useful to note that fD  is 

typically in the range of 3 to 5 pile diameter whereas mD  is in the range of 1 to 2 pile diameter 

(see Priestley et al., 1996). Obviously, plastic hinge at fD  in the equivalent fixity model would 

provide slightly larger plastic displacement compared to the plastic displacement if the plastic 

hinge was correctly located at mD ; note that plastic displacement is given by 

( ) or p p a f mL D DθΔ = +  where pθ  is the plastic hinge rotation and aL  is the free-standing height 

of the pile. However, the simplifying assumption used in this investigation is appropriate because 

difference between fD  and mD  is unlikely to significantly affect the plastic displacement for 

piles with very long free-standing height used in marine oil terminals. Note that the freestanding 

height of piles in marine oil terminals is typically in excess of twenty times the pile diameter. 
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It is useful to emphasize that the simplified approach proposed in this investigation is 

intended to be used for preliminary design of piles or as a check on the results from the detailed 

nonlinear analysis. It is expected that this approach would provide results that are sufficiently 

“accurate” for this purpose. 

The recommendations to estimate displacement capacity of the pile using the equivalent 

fixity approach are strictly valid only if the displacement demand is also estimated by utilizing 

the equivalent fixity pile model – a practice that is commonly used for analysis of large piers and 

wharves with many piles. The recommendations developed in this report should be used with 

caution if the displacement demand is estimated from a model consisting of piles with soil 

springs. 
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4. MOTEMS PROCEDURE FOR CAPACITY EVALUATION OF PILES 

The displacement capacity of piles in the MOTEMS is estimated from nonlinear static pushover 

analysis. In this analysis, a force of increasing magnitude is applied statically in the transverse 

direction (perpendicular to the pile) permitting the materials in the pile – steel and/or concrete – 

to deform beyond their linear-elastic range. The displacement capacity is defined as the 

maximum displacement that can occur at the tip of the pile without material strains exceeding the 

permissible values corresponding to the desired design level. 

The displacement capacity of a pile at a selected design level in the MOTEMS is obtained 

from the procedure proposed by Priestley et al. (1996) as illustrated in Figure 4.1. This procedure 

requires development of the pile section moment-curvature relationship. The moment-curvature 

relationship may be developed from any standard moment-curvature analysis programs using 

material constitutive relationships specified in the MOTEMS; the MOTEMS specifies guidelines 

for selecting material properties such as concrete and steel strengths as well as stress-strain 

curves for unconfined concrete, confined concrete, reinforcing steel, and prestressing steel. The 

moment-curvature relationship is idealized as a bilinear relationship as shown in Figure 4.2. 

It is useful to note that the formulation presented here is for a cantilever, i.e., a pile with a 

pin-connection to the deck. Similar formulation is available for piles with full-moment-

connection to the deck that uses “effective” length defined as the length between points of 

contra-flexure (e.g., see CALTRANS, 2006). 
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Figure 4.1. Deformation capacity of a pile: (a) Deflected shape, (b) Bending moment (BM) 
diagram, (c) Curvature distribution, and (d) Yield and plastic displacements. 

The total displacement capacity of the pile is computed as 
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 y PΔ = Δ + Δ  (4.1) 

in which yΔ  is the yield displacement and pΔ  is the plastic displacement of the pile. The yield 

displacement can be estimated as 

 
2

3
y

y
Lφ

Δ =  (4.2) 

where yφ  is the yield curvature computed from 

 y
y

c e

M
E I

φ =  (4.3) 

with yM  being the yield moment and c eE I  being the slope of the initial elastic portion of the 

bilinear idealization of the moment-curvature relationship, and L  is the pile “effective” length. 

The “effective” length, defined as the length between points of contraflexure, for a cantilever 

becomes equal to its total length (Figure 4.1). 

It is useful to note that the yield displacement, yΔ , of reinforced-concrete pile may be 

estimated from Equation (4.2), without the need for section moment-curvature analysis, by using 

the following expression for dimensionless yield curvature (Priestley et al., 1996: Sec. 7.4.6): 

 2.45 0.15y yDφ ε= ±  (4.4) 

in which D  is the pile diameter and yε  is the longitudinal yield reinforcement. Similar 

expression for hollow-steel pile is currently not available. 
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Figure 4.2. Bilinear idealization of the moment-curvature relationship. 
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The plastic displacement, Δ p, is computed from  

 ( )( )1 0.5u
p y p u y p

y

M L L L
M

φ φ
⎛ ⎞

Δ = − Δ + − −⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.5) 

The plastic displacement given by Equation (4.5) includes components due to the elastic 

displacement resulting from the increase in moment from yM  to uM , i.e., post-yield stiffness of 

the moment-curvature relationship (see Figure 4.2) and due to plastic rotation pθ  of the pile. In 

order to compute the plastic rotation, it is assumed that a constant plastic curvature, p u yφ φ φ= − , 

occurs over a plastic hinge length pL  of the pile (see Figure 4.1c). Therefore, the plastic rotation 

is given by 

 ( )p p p p u yL Lθ φ φ φ= = −  (4.6) 

The values of uM  and uφ  in equation (4.5) are the largest values of the pile section moment and 

curvature, respectively, without exceeded the material strains at selected design level. 

The MOTEMS specify the formula for estimating the plastic hinge length required in 

Equation (4.5). If the hinge were to form against a supporting member, i.e., at the pile-deck 

interface, the plastic hinge length is computed from  

 
0.08 0.022 0.044 (  in MPA)

0.08 0.15 0.3 (  in ksi)
ye bl ye bl ye

p
ye bl ye bl ye

L f d f d f
L

L f d f d f
+ ≥⎧

= ⎨ + ≥⎩
 (4.7) 

in which yef  is the expected yield strength of the reinforcing steel, and bld  is the diameter of the 

longitudinal reinforcement. If the plastic hinge forms in-ground, the MOTEMS provide a chart to 

estimate the plastic hinge length that depends on the pile diameter, subgrade modulus, effective 

stiffness of the pile, and the distance from ground to the pile point of contraflexure. It is useful to 

note that Equation (4.7), as specified in Priestley et al., (1996) or in the MOTEMS (2006), does 

not explicitly impose an upper limit even though there may be some experimental evidence that 

the plastic hinge length should not be greater than the pile diameter.  
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The plastic hinge length formula of Equation (4.7) specified in the MOTEMS is based on 

the recommendation by Priestley et al. (1996) for reinforced concrete sections. The MOTEMS 

do not provide recommendations for plastic hinge length for steel piles or prestressed concrete 

piles. 

The MOTEMS specify material strain limits for two levels of seismic design: Level 1 and 

Level 2. These strain limits depend on whether the plastic hinge forms in-ground or at the pile-

deck interface. These strain limits are listed in Table 4.1. 

Table 4.1. Material strain limits in the MOTEMS. 
 

Pile Type Material Hinge Location Level 1 Level 2 
Pile-Deck 0.004cε ≤  0.025cε ≤  Concrete 
In-Ground 0.004cε ≤  0.008cε ≤  
Pile-Deck 0.01sε ≤  0.05sε ≤  

Reinforced-Concrete 
Pile 

Steel rebar 
In-Ground 0.01sε ≤  0.025sε ≤  
In-Ground 0.005pε ≤  

(Incremental) 
0.025pε ≤  

(Total) 
Prestressed Concrete 

Pile with Dowel-
Connection  

Strands 

Pile-Deck 0.01sε ≤  0.05sε ≤  
Hollow Steel Pile Steel  0.008sε ≤  0.025sε ≤  

In-Ground 0.008sε ≤  0.025sε ≤  Hollow Steel Pile with 
Dowel-Connection 

Steel 
Pile-Deck 0.01sε ≤  0.05sε ≤  
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5. SIMPLIFIED PROCEDURE TO COMPUTE PILE DISPLACEMENT CAPACITY 

Estimation of displacement capacity of the pile according to the seismic provisions of the 

MOTEMS require monitoring of material strains during the nonlinear static pushover analysis of 

the pile if the pile is modeled using a distributed-plasticity approach in which section properties 

are specified by a fiber-section. The estimation of the displacement capacity requires monitoring 

of material strains during moment-curvature analysis if the pile is modeled using a concentrated-

plasticity approach in which nonlinearity is represented by rotational springs at two ends of the 

pile. The nonlinear moment-rotation relationship of this spring is computed from the moment-

curvature relationship and estimated length of the plastic hinge. In either approach, the 

displacement capacity is defined as the maximum displacement that can occur at the tip of the 

pile without material strains exceeding the strain limits specified in the MOTEMS for any 

selected design level. 

Monitoring strains during pushover analysis of piles using a distributed-plasticity model is 

cumbersome. Moreover, structural analysis programs commonly used by practicing engineers 

may not have the capability to directly monitor strains during the pushover analysis. Although, 

the concentrated-plasticity model, such as that employed in the current MOTEMS (see 

description in Chapter 4), does not require direct monitoring of material strains during pushover 

analysis; however, it still requires monitoring of material strains during moment-curvature 

analysis. Most commercially available programs for moment-curvature analysis do provide the 

capability to monitor material strains. However, this approach requires estimation of plastic 

hinge length in order to convert the moment-curvature relationship to the moment-rotation 

relationship of the rotational spring. While the MOTEMS provide guidelines for estimating 

plastic hinge length for reinforced concrete piles [see Equation (4.7)], such guidelines are not 

available for steel piles or prestressed concrete piles indicating that estimation of displacement 

capacity of such piles using concentrated-plasticity model may also be cumbersome. Therefore, 

there is a need to develop a simplified approach that avoids the need to monitor strains to the 

extent possible and yet provides a “good” estimate of displacement capacity of the pile without 

exceeding material strain limits specified in the MOTEMS. 

It is useful to note that formulas and/or charts for estimating the plastic hinge length have 

been recommended by several researchers (e.g., Priestley et al., 1996; Chai, 2002; Chai and 
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Hutchinson, 2002; Budek et al., 2000; Song et al., 2004). However, these recommendations were 

developed for piles deformed significantly into the inelastic range. While such recommendations 

are appropriate for seismic design of piles for Level 2, where piles are expected to be deformed 

significantly into the inelastic range, they may not be appropriate for design of piles for Level 1 

which corresponds to much lower level of inelastic action. 

A simplified procedure is proposed in this report to compute the displacement capacity of 

piles commonly used in Marine Oil and LNG Terminals. This approach computes the 

displacement capacity as 

 c yμΔΔ = Δ  (5.1) 

where yΔ  is the yield displacement of the pile and μΔ  is the displacement ductility capacity of 

the pile. The displacement ductility capacity is selected such that the material strains remain 

within the limits specified in the MOTEMS.  

The guidelines to select the displacement ductility capacity and estimate the yield 

displacement are developed next in this report for four types of piles: (1) reinforced-concrete 

piles with either pin or full-moment connection to the deck; (2) hollow steel pipe pile with either 

pin or full-moment connection to the deck; (3) hollow steel pipe pile with a dowel- connection to 

the deck; and (4) prestressed concrete pile with a dowel-connection to the deck. The guidelines 

developed for these piles utilize the concept of equivalent fixity model described in Chapter 3 of 

this report. 

Similar displacement ductility capacity based approaches have been proposed previously 

(e.g., Priestly et al., 1996; Budek at al., 2000; Chai, 2002; Song et al., 2004). However, this 

investigation specifically developed recommendations for displacement ductility capacity of long 

piles typically used in Marine Oil and LNG Terminals. 

The simplified procedure to estimate displacement capacity of piles presented in this report 

is intended either for preliminary design of piles or as a quick check on the capacity that may be 

obtained from detailed nonlinear analyses. The design engineers may still use the elaborate 

analysis for final design of piles for a Marine Oil and LNG Terminals.  
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6. DISPLACEMENT CAPACITY OF REINFORCED CONCRETE PILES 

This Chapter presents development of a simplified procedure for estimating displacement 

capacity of reinforced concrete piles connected to the deck either by a pin connection or by a 

moment connection. For this purpose, the current approach in the MOTEMS (see Equations 4.1 

to 4.7 in Chapter 4) is further simplified. Presented first in this Chapter is development of 

simplified equations to compute displacement ductility of reinforced concrete piles that are 

independent of the pile length and depend only on the pile section curvature ductility and seismic 

design level. The accuracy of these equations is next evaluated against results from nonlinear 

finite element analyses. Subsequently, results of a parametric study are presented to understand 

the sensitivity of the displacement ductility capacity on pile diameter, longitudinal reinforcement 

ratio, transverse reinforcement ratio, and axial force. Based on these results, lower bound 

estimates of the ductility capacity of reinforced concrete piles for two design levels – Level 1 and 

Level 2 – are proposed. Finally, it is demonstrated that the lower-bound displacement ductility 

values along with simplified expressions for yield displacement provide very good estimate of 

the displacement capacity of piles when compared against values from nonlinear finite element 

analysis. 

6.1 THEORETICAL BACKGROUND 

The displacement ductility capacity of reinforced concrete piles is defined as (Priestley et al., 

1996) 

 ( )1 3 1 1 0.5y p p p pu

y y y

L LM
M L Lφμ μΔ

Δ + Δ Δ ⎛ ⎞⎛ ⎞
= = + = + − −⎜ ⎟⎜ ⎟Δ Δ ⎝ ⎠⎝ ⎠

 (6.1) 

in which φμ  is the pile section curvature ductility capacity given by  

 u

y
φ

φμ
φ

=  (6.2) 

with uφ  being the section curvature at a selected design level material strain and yφ  is the yield 

curvature defined by Equation (4.3) and Figure 4.2. For piles in Marine Oil and LNG Terminals, 

which typically use piles with very long free-standing height, the second term in Equation (4.7) 

for plastic hinge length becomes negligibly small compared to the first term implying that this 
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term may be ignored without introducing significant error. Therefore, the plastic hinge length 

may be expressed as 

 0.08pL L  (6.3) 

Equation (6.3) implies that the ratio pL L  needed in Equation (6.1) is independent of the 

member “effective” length. It is useful to note that neglecting the second term in the Equation 

(4.6) for the plastic hinge location leads to smaller plastic hinge length and therefore is likely to 

provide a conservative estimate of the displacement ductility capacity of the pile. 

The preceding approximation permits the following important simplification in Equation 

(6.1): 

 ( )( )( ) ( )3 1 0.08 1 0.5 0.08 0.2304 1u u

y y

M M
M Mφ φμ μ μΔ = + − − × = + −  (6.4) 

which implies that the pile displacement ductility capacity is independent of its “effective” 

length; it depends only on the section curvature ductility, φμ , and ratio of ultimate and yield 

moments u yM M . For moment-curvature relationship that exhibit very little post-yield 

stiffness, i.e., u yM M , Equation (6.4) can be further simplified as 

 ( )1 0.2304 1 0.7696 0.2304φ φμ μ μΔ = + − = +  (6.5) 

Equation (6.5) indicates that member displacement ductility capacity can be computed directly 

from the section curvature ductility capacity.  

6.2 EVALUATION OF SIMPLIFIED EQUATIONS FOR DUCTILITY CAPACITY 

The accuracy of Equations (6.5) in estimating displacement ductility capacity of reinforced 

concrete piles at seismic design Level 2 and Level 1, respectively, is evaluated in this section. 

For this purpose, displacement ductility capacity of reinforced concrete piles is evaluated from 

nonlinear static pushover analysis of a finite element model. The pile is considered to be fixed at 

top and bottom. These boundary conditions correspond to a pile that is connected to the pile-cap 

with a full-moment connection, and utilizes the equivalent displacement fixity assumption at the 

bottom. The axial load on the pile is assumed to be '0.05 g cA f  in which gA  is the gross cross-
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section area of the pile and '
cf  is the compressive strength of concrete. The longitudinal and 

transverse reinforcements in the pile section are assumed to be equal to 1% and 0.6%, 

respectively. 

The pile is modeled with a nonlinear beam-column element in computer program Open 

System for Earthquake Engineering Simulation (OpenSees) (McKenna and Fenves, 2001). The 

distributed plasticity is considered by specifying the section properties by a fiber section model 

and then using seven integration points along the element length; details of such modeling may 

be found in McKenna and Fenves (2001). The material properties are specified as per the 

MOTEMS specifications (MOTEMS, 2007; Mander et al., 1988). 

Strains in the concrete and steel are monitored during the pushover analysis. The limiting 

values of compressive strain in concrete and tensile strain in reinforcing steel are 0.004 and 0.01, 

respectively, for Level 1 and 0.025 and 0.05, respectively, for Level 2. If the hinge forms below 

ground, the limiting value of compressive strain in concrete and tensile strain in reinforcing steel 

are 0.004 and 0.01, respectively, for Level 1 and 0.008 and 0.025, respectively, for Level 2. The 

concrete strains are assumed to be specified just inside the reinforcement cage. The displacement 

ductility at a selected design level corresponds to the largest displacement that can occur at the 

tip of the pile without strain limits either in concrete or steel being exceeded. 

The results are presented in Figure 6.1 for four pile diameters – 61 cm, 76 cm, 91 cm, and 

107 cm – and pile length in the range of 5 m to 40 m. These results confirm expectations from 

Equation (6.5) that the displacement ductility capacity is independent of the pile length. This 

becomes apparent from essentially no variation in the ductility capacity from the nonlinear finite 

element analysis of the pile lengths in Figure 6.1 for both design levels and all pile diameters. 

The presented results also demonstrate that Equation (6.5) provides a very good estimate of the 

displacement ductility capacity of reinforced concrete piles (see Figure 6.1).  

It is useful to note that the plastic hinge length used in this investigation does not include 

contribution to the plastic hinge length due to strain-penetration effects. It would be useful to 

verify these findings from experiments on reinforced concrete piles. 
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Figure 6.1. Displacement ductility capacity from simplified equation (shown in dashed line) and 
nonlinear finite element analysis (NLFEA) for seismic design (a) Level 1 for in-ground (IG) or 
pile-deck (PD) hinge formation, (b) Level 2 for IG hinge formation, and (c) Level 2 for PD hinge 
formation.  

6.3 SENSITIVITY OF DISPLACEMENT DUCTILITY TO PILE PARAMETERS 

6.3.1 Pile Length and Pile Diameter 

Figure 6.2 presents variation of displacement ductility capacity with pile length for four values of 

pile diameters: 61 cm, 76 cm, 91 cm, and 107 cm. The results are presented for piles with 1% 

longitudinal reinforcement and 0.6% transverse reinforcement. As noted previously, results of 
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Figure 6.2 also indicate that the displacement ductility capacity of piles is essentially 

independent of the pile length. This is expected because Equation (6.5) becomes independent of 

the pile length. The results of Figure 6.2 indicate that the displacement ductility capacity of the 

pile is also essentially independent of the pile diameter as apparent from almost identical curves 

for the four pile diameters considered in Figure 6.2. 
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Figure 6.2. Variation of displacement ductility capacity computed from nonlinear finite element 
analysis (NLFEA) with pile length and pile diameter: (a) Level 1 for in-ground (IG) or pile-deck 
(PD) hinge formation, (b) Level 2 for IG hinge formation, and (c) Level 2 for PD hinge 
formation. 

In order to understand the aforementioned trend, i.e., independence of the displacement 

ductility capacity of the pile diameter, it is useful to examine the variation of pile section 

curvature ductility capacity. The results presented in Figure 6.3 indicate that the section 

curvature ductility capacity is essentially independent of the pile diameter. This observation, 

along with Equation (6.5), then confirms that the pile displacement ductility capacity should also 

be independent of the pile diameter. 
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Figure 6.3. Variation of section curvature ductility capacity pile diameter: (a) Level 1 for in-
ground (IG) or pile-deck (PD) hinge formation, (b) Level 2 for IG hinge formation, and (c) Level 
2 for PD hinge formation. 
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6.3.2 Longitudinal and Transverse Reinforcement Ratio 

Figures 6.4 and 6.5 present variations of the displacement ductility capacity with longitudinal 

and transverse reinforcement ratio, respectively. The results presented are for a pile with 91 cm 

diameter and 15 m length. The values of longitudinal reinforcement varying between 0.5% and 

2% and transverse reinforcement between 0.5% and 1.5% were considered.  
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Figure 6.4. Variation of displacement ductility capacity computed from nonlinear finite element 
analysis (NLFEA) with pile longitudinal reinforcement ratio: (a) Level 1 for in-ground (IG) or 
pile-deck (PD) hinge formation, (b) Level 2 for IG hinge formation, and (c) Level 2 for PD hinge 
formation. 

The results presented in Figure 6.4 indicate that the displacement ductility decreases with 

increasing longitudinal reinforcement ratio for values up to about 1%. For longitudinal 

reinforcement ratio in excess of about 1%, as may be the case for seismic piles in Marine Oil and 

LNG Terminals, the displacement ductility capacity of piles is much less sensitive to the value of 

the longitudinal reinforcement ratio. For such values, the displacement ductility capacity may be 

considered to be essentially independent of the longitudinal reinforcement ratio. 
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Figure 6.5. Variation of displacement ductility capacity computed from nonlinear finite element 
analysis (NLFEA) with pile transverse reinforcement ratio: (a) Level 1 for in-ground (IG) or 
pile-deck (PD) hinge formation, (b) Level 2 for IG hinge formation, and (c) Level 2 for PD hinge 
formation. 
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The results presented in Figure 6.5 show that displacement ductility capacity of piles does 

not depend on the transverse reinforcement ratio. This becomes apparent from essentially flat 

variation of the displacement ductility capacity with pile transverse reinforcement ratio. 

6.3.3 Axial Force 

Figure 6.6 presents variation of displacement ductility capacity with axial force in the pile. The 

presented results are for a pile with 91 cm diameter and 15 m length for values of axial force 

varying from zero to '0.2 g cA f . These results show that the displacement ductility for Level 1 

tends to increase with increasing pile axial force (Figure 6.6 (a)). However, the ductility for 

Level 2 appears to be insensitive to the axial force values (Figure 6.6 (b) and 6.6(c)).  
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Figure 6.6. Variation of displacement ductility capacity computed from nonlinear finite element 
analysis (NLFEA) with pile axial load ratio: (a) Level 1 for in-ground (IG) or pile-deck (PD) 
hinge formation, (b) Level 2 for IG hinge formation, and (c) Level 2 for PD hinge formation. 

6.4 LOWER BOUND OF DISPLACEMENT DUCTILITY CAPACITY 

The results presented in the preceding section indicate that the displacement ductility is relatively 

insensitive to pile length, pile diameter, pile longitudinal (for practical range), and transverse 

steel. Furthermore, the displacement ductility for Level 2 is also independent of the pile axial 

force. Therefore, the displacement ductility appears to be a very robust parameter that can be 

used in simplified design of piles instead of the various axial strain limits which are currently 

specified in the MOTEMS. While the displacement ductility may be related to the pile curvature 

ductility using Equation (6.5), the results presented in the preceding section also indicate that a 

lower bound of the member displacement ductility capacity may be estimated without any 

knowledge about the section curvature ductility capacity for practical range of various 

parameters.  
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Figure 6.7. Lower-bound value of displacement ductility capacity due to pile-deck hinge 
formation for seismic design (a) Level 1, and (b) Level 2. 

The results presented in Figure 6.7 for a pile-deck hinge indicates that the displacement 

ductility capacity may be limited to 1.75 for seismic design Level 1 and 5.0 for seismic design 

Level 2. Note that the displacement ductility for Level 1 is likely to be slightly lower for axial 

force values than the 0.05 g cA f ′  value considered in developing these results (see Figure 6.6 (a)). 

Similarly, the displacement ductility is likely to be slightly larger for longitudinal reinforcement 

less than the 1% value considered in developing these results (see Figure 6.4 (a)).  

The displacement ductility capacity for an in-ground hinge is 1.75 for seismic design Level 

1 and 2.5 for seismic design Level 2 (Figure 6.8). While the ductility capacity for in-ground 

hinge is the same as for pile-deck hinge for design Level 1, it is much lower for design Level 2. 

This is because the steel strain limit for design Level 2 is much lower for the in-ground hinge 

compared to the pile-deck hinge.  
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Figure 6.8. Lower-bound value of displacement ductility capacity due to in-ground hinge 
formation for seismic design (a) Level 1, and (b) Level 2. 
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6.5 SIMPLIFIED PROCEDURE TO COMPUTE DISPLACEMENT CAPACITY  

Displacement capacity of piles at a selected design level may be estimated from  

 c yμΔΔ = Δ  (6.6) 

in which μΔ  is the ductility capacity at a selected design level and location of hinge, i.e., equal 

to 1.75 for Level 1 design and 5 for Level 2 design if the hinge were to form in the pile near the 

deck, and equal to 1.75 for Level 1 and 2.5 for Level 2 if the hinge were to form in-ground, and 

yΔ  is the yield displacement of the pile. The yield displacement can be computed from nonlinear 

pushover analysis of the pile. Alternatively, the yield displacement may be estimated based on 

section yield moment and effective section eEI . For example, the yield displacement of a pile 

that is fixed at the bottom and prevented from rotation at the top due to a rigid deck may be 

estimated from 

 
2

6
y

y
e

M L
EI

Δ =  (6.7) 

and yield displacement of a cantilever may be estimated from  

 
2

3
y

y
e

M L
EI

Δ =  (6.8) 

in which yM  is the section yield moment and eEI  is the effective value of EI  that can be 

estimated from the section moment-curvature relationship analysis as the initial slope of the 

idealized bilinear moment-curvature relationship (see Figure 4.2). 

The accuracy of the procedure to estimate the displacement capacity of piles is evaluated 

next. For this purpose, the approximate displacement capacity is computed first from Equation 

(6.6) by utilizing the yield displacement from Equation (6.7) or (6.8) depending on the boundary 

conditions. The exact displacement capacity is computed next from Equation (6.6) but with yield 

displacement estimated from nonlinear static pushover analysis of the pile. For both cases, the 

value of the ductility capacity obtained from the pushover analysis is used. The approximate and 

exact displacement capacities are compared in Figure 6.9 for a pile with 91 cm diameter. These 
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results indicate that the approximate analysis provides an excellent estimate of the displacement 

capacity of the pile for Level 1 as well as Level 2 design.  
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Figure 6.9. Comparison of displacement capacities due to pile-deck hinge formation from exact 
and approximate analyses. 

The approximate analysis is attractive because it eliminates the need for nonlinear static 

analysis of the pile. However, it must be noted that the approximate analysis may only be used 

for the soil-pile-deck system that can be idealized either by a fixed-fixed column or by a 

cantilever column – the two cases for which closed form solutions to estimate yield displacement 

are available (see Equations 6.7 and 6.8) – using the equivalent displacement fixity concept. For 

other cases, the yield displacement may have to be estimated from nonlinear static pushover 

analysis of the soil-pile-deck system. 
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7. DISPLACEMENT CAPACITY OF HOLLOW STEEL PILES 

This Chapter presents development of a simplified procedure for estimating displacement 

capacity of hollow steel piles connected to the deck either by a pin connection or by a full-

moment-connection strong enough to force hinging in the steel pile. For this purpose, the current 

approach in the MOTEMS (see Equations 4.1 to 4.6 in Chapter 4) is further simplified. Presented 

first is the development of simplified equations to compute displacement ductility of hollow steel 

piles that are independent of the pile length and depend only on the pile section ductility and 

seismic design level. The accuracy of these equations is then evaluated against results from 

nonlinear finite element analyses. Subsequently, results of a parametric study are presented to 

show the sensitivity of the displacement ductility capacity on pile diameter, pile thickness, and 

axial force level. Based on these results, lower bound estimates of the ductility capacity of 

hollow steel piles for two design levels – Level 1 and Level 2 – are proposed. Finally, it is 

demonstrated that the lower-bound displacement ductility values along with simplified 

expressions for yield displacement provide very good estimates of the displacement capacity of 

piles when compared against values from nonlinear finite element analysis. 

7.1 THEORETICAL BACKGROUND 

Similar to the displacement ductility of reinforced concrete piles, the displacement ductility 

capacity of hollow steel piles may also be defined as 

 ( )1 3 1 1 0.5p pL L
L Lφμ μΔ

⎛ ⎞⎛ ⎞
+ − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (7.1) 

The MOTEMS does not explicitly provide guidelines for selecting length of the plastic hinge for 

hollow steel piles. Based on calibration of results from finite element analysis against those from 

Equation (7.1) (see results presented later in Figure 7.1), it was found that the following plastic 

hinge lengths are appropriate for the two seismic design levels for hollow steel piles in Marine 

Oil and LNG Terminals: 

 0.03    for Level 1pL L  (7.2a) 

 0.075    for Level 2pL L  (7.2b) 
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With the plastic hinge length selected as given by Equations (7.2(a) and 7.2(b)), Equation 

(7.1) simplifies to  

 0.9113 0.0886    for Level 1φμ μΔ = +  (7.3a) 

 0.7834 0.2166    for Level 2φμ μΔ = +  (7.3b) 

As noted previously for reinforced concrete piles, Equations (7.3(a) and 7.3(b)) for displacement 

ductility capacity of hollow steel piles also indicates that the displacement ductility capacity is 

independent of the pile length and it can be computed directly from the section curvature 

ductility capacity. Because the plastic hinge length differs for the two design levels, the 

displacement ductility also depends on the seismic design level. 

7.2 EVALUATION OF SIMPLIFIED EQUATIONS FOR DUCTILITY CAPACITY 

The accuracy of Equations (7.3(a) and 7.3(b)) in estimating displacement ductility capacity of 

hollow steel piles at seismic design Level 1 and Level 2, respectively, is evaluated in this section. 

For this purpose, displacement ductility capacity of hollow steel piles is evaluated from nonlinear 

static pushover analysis of a finite element model. The pile is considered to be fixed at top and 

bottom. These boundary conditions correspond to a pile that is connected to the pile-cap with a 

full-moment connection that would force formation of a plastic hinge in the steel pile, and 

utilizes the equivalent displacement fixity assumption at the bottom. The axial load on the pile is 

assumed to be 0.05 yAf  in which A  is the cross section area of the pile and yf  is the yield 

strength of steel. The pile wall thickness is assumed to be 1.27 cm.  

The pile is modeled with a nonlinear beam-column element using the computer program 

“Open System for Earthquake Engineering Simulation (OpenSees)”, (McKenna and Fenves, 

2001). The distributed plasticity is considered by specifying the section properties by a fiber 

section model and the using seven integration points along the element length; details of such 

modeling may be found in McKenna and Fenves (2001). Strains in steel are monitored during the 

pushover analysis. The limiting values of strain in steel are 0.008 and 0.025 for Level 1 and 

Level 2, respectively for in-ground or pile-deck hinge formation. The displacement ductility at a 

selected design level corresponds to the largest displacement that can occur at the tip of the pile 

without the strain limit in steel being exceeded. 
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The results are presented in Figure 7.1 for three pile diameters – 61 cm, 91 cm, and 107 cm. 

These results permit two important observations. First, results from the nonlinear finite element 

analysis confirm expectations from Equation (7.3(a) and 7.3(b)) that the displacement ductility 

capacity is independent of the pile length. This becomes apparent by essentially no variation in 

the ductility capacity from the nonlinear finite element analysis with the various pile lengths in 

Figure 7.1 for both design levels and all pile diameters. 
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Figure 7.1. Displacement ductility capacity from simplified equations and nonlinear finite 
element analysis (NLFEA) for seismic design (a) Level 1 and (b) Level 2.  

Second, Equations (7.3(a) and 7.3(b)) provide very good estimates of the displacement 

ductility capacity of hollow steel piles at seismic design Level 1 (see Figure 7.1(a)) and Level 2 

(see Figure 7.1(b)), respectively. If Equation (7.3(b)) were to be used to estimate, displacement 
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ductility capacity at seismic design Level 1, it would provide an estimate that significantly 

exceeds the value from nonlinear finite element analysis (see Figure 7.1(a)). Therefore, a lower 

value of the plastic hinge length, as has been used in Equation (7.3(a)) for seismic design Level 1 

is justified. 

These results indicate that the moment-rotation relationship to be used in the concentrated 

plasticity model of hollow steel piles should consider different plastic hinge lengths for the two 

design levels. If the same plastic hinge length, i.e., that for seismic design Level 2, is used in the 

model that computes the displacement ductility capacity for Level 1, it may significantly 

overestimate the displacement capacity for that design level (Level 1). 

It is useful to note that the plastic hinge length for hollow steel piles in this investigation is 

proposed based on calibration against nonlinear finite element results. It would be useful to 

verify these findings from experiments on hollow steel pile conducted at displacement levels that 

are expected during seismic design Level 1 and Level 2. 
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Figure 7.2. Variation of displacement ductility capacity computed from nonlinear finite element 
analysis (NLFEA) with pile length and pile diameter: (a) Level 1, and (b) Level 2. 

7.3 SENSITIVITY OF DISPLACEMENT DUCTILITY TO PILE PARAMETERS 

7.3.1 Pile Length and Pile Diameter 

Figure 7.2 presents variation of displacement ductility capacity with pile length for three values 

of pile diameters: 61 cm, 91 cm, and 107 cm. The results are presented for piles with wall 

thickness of 1.27 cm. Results in Figure 7.2 indicate that the displacement ductility capacity of 

piles is essentially independent of the pile length. This is expected because Equations (7.3(a) and 

7.3(b)) becomes independent of the pile length. The results of Figure 7.2 also indicate that the 
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displacement ductility capacity of the pile is also essentially independent of the pile diameter as 

apparent from almost identical curves for the three pile diameters considered. 

In order to understand the aforementioned trend, i.e., independence of the displacement 

ductility capacity of pile diameter, it is useful to examine the variation of pile section curvature 

ductility capacity. The results presented in Figure 7.3 indicate that the section curvature ductility 

capacity is essentially independent of the pile diameter. This observation, along with Equations 

(7.3(a) and 7.3(b)), then confirms that the pile displacement ductility capacity should also be 

independent of the pile diameter. 
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Figure 7.3. Variation of section curvature ductility capacity with pile diameter: (a) Level 1, and 
(b) Level 2. 

7.3.2 Pile Wall Thickness 

The effects of the pile wall thickness on the displacement ductility capacity are examined 

next. For this purpose, variations of displacement ductility with pile length for three values of 

pile thickness are compared in Figure 7.4. The results presented are for a pile with 91 cm 

diameter and axial force equal to 0.05 yAf . These results show that the displacement ductility is 

essentially independent of the pile wall thickness as indicated by essentially identical curves for 

the three values of pile wall thickness.  
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Figure 7.4. Variation of displacement ductility capacity computed from nonlinear finite element 
analysis (NLFEA) with pile length for three values of pile wall thickness: (a) Level 1, and (b) 
Level 2. 

7.3.3 Axial Force 

Figure 7.5 presents variation of displacement ductility capacity with axial force in the pile. The 

presented results are for a pile with 91 cm diameter and 15 m length with values of axial force 

varying from zero to 0.2 yAf . These results show that the displacement ductility for Level 1 is 

essentially independent of the pile axial load (Figure 7.5(a)). For Level 2, while the displacement 

ductility may depend on the axial load for very-low axial loads, it becomes essentially 

independent of the axial load for more realistic values.  However, the ductility for Level 2 

appears to be insensitive to the axial force values, i.e., axial loads greater than 0.05 yAf  (Figure 

7.5(b)).  
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Figure 7.5. Variation of displacement ductility capacity computed from nonlinear finite element 
analysis with pile axial load ratio: (a) Level 1, and (b) Level 2. 
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7.4 LOWER BOUND OF DISPLACEMENT DUCTILITY CAPACITY 

The results presented so far indicate that the displacement ductility of hollow steel piles is 

relatively insensitive to pile length, pile diameter, pile wall thickness, and pile axial load. 

Therefore, the displacement ductility appears to be a very robust parameter that can be used in 

simplified design of piles instead of the various axial strain limits which are currently specified 

in the MOTEMS. While the displacement ductility may be related to the pile curvature ductility 

using Equation (7.3), the results presented in the preceding section also indicate that a lower 

bound of the member displacement ductility capacity may be estimated without any knowledge 

about the section curvature ductility capacity for practical range of various parameters. The 

results presented in Figure 7.6 for pile-deck hinge indicate that the displacement ductility 

capacity may be limited to 1.2 for seismic design Level 1 and 2.75 for seismic design Level 2.  
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Figure 7.6. Lower-bound value of displacement ductility capacity of hollow steel piles for 
seismic design (a) Level 1, and (b) Level 2. 

7.5 SIMPLIFIED PROCEDURE TO COMPUTE DISPLACEMENT CAPACITY  

Displacement capacity of piles at a selected design level may be estimated from  

 c yμΔΔ = Δ  (7.4) 

in which μΔ  is the ductility capacity at a selected design level, i.e., equal to 1.2 for Level 1 

design and 2.75 for Level 2 design, and yΔ  is the yield displacement of the pile. The yield 

displacement can be computed from nonlinear pushover analysis of the pile. Alternatively, the 

yield displacement may be computed based on section properties. For example, the yield 

displacement of a pile that is fixed at the bottom and prevented from rotation at the top due to 
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rigid deck may be estimated from 

 
2

6
y

y
M L

EI
Δ =  (7.5) 

and yield displacement of a cantilever may be estimated from  

 
2

3
y

y
M L

EI
Δ =  (7.6) 

in which yM  is the effective section yield moment that can be estimated from section moment-

curvature analysis and I  is the section moment of inertia that can be estimated from the section 

properties, and E  is the modulus of elasticity for steel. 

The accuracy of the approximate procedure to estimate the displacement capacity of piles is 

evaluated next. For this purpose, the approximate displacement capacity is computed first from 

Equation (7.4) by utilizing the yield displacement from Equation (7.5) or (7.6) depending on the 

boundary conditions. The exact displacement capacity is computed next from Equation (7.4) but 

with yield displacement estimated from nonlinear the static pushover analysis of the pile. For 

both cases, value of the ductility capacity obtained from the pushover analysis is used. The 

approximate and exact displacement capacities are compared in Figure 7.7 for a pile with 91 cm 

diameter. These results indicate that the approximate analysis provides an excellent estimate of 

the displacement capacity of the pile for Level 1 as well as Level 2 design.  
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Figure 7.7. Comparison of displacement capacities from exact and approximate analyses. 

The approximate analysis is attractive because it eliminates the need for nonlinear static 

analysis of the pile. However, it must be noted that the approximate analysis may only be used 
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for the soil-pile-deck system that can be idealized either by a fixed-fixed column or by a 

cantilever column – the two cases for which closed form solutions to estimate yield displacement 

are available (see Equations 7.5 and 7.6) – using equivalent displacement fixity concept. For 

other cases, the yield displacement may have to be estimated from nonlinear static pushover 

analysis of the soil-pile-deck system.  
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8. DISPLACEMENT CAPACITY OF PILES WITH DOWEL-CONNECTION 

Piles are often connected to the deck using dowels. The size and number of dowel bars are 

typically selected so that the moment capacity of the connection is smaller than the moment 

capacity of the pile. As a result, the yielding is expected to occur in the connection rather than 

the pile. The nonlinear behavior of piles with such partial-moment connection to the deck slab 

may differ significantly compared to the piles with full-moment connections presented in the 

previous chapters. This chapter describes two types of dowel-connections – hollow steel piles 

connected to the deck by a concrete plug and dowels, and prestressed concrete piles connected to 

the deck by dowels grouted into the pile and embedded in the deck concrete. Subsequently, 

nonlinear behavior of such connections is examined. Finally, closed form solutions for 

estimating displacement capacity of piles with partial-moment connections are presented. 

8.1 DOWEL-CONNECTIONS 

8.1.1 Hollow Steel Piles 

Figure 8.1 shows details of the connections between a hollow steel pile and the concrete deck of 

a Marine Oil or LNG Terminal. In this connection, denoted as the concrete-plug connection, 

dowels are embedded in a concrete plug at the top of the pile. The concrete plug is held in place 

by shear rings at its top and bottom; the shear rings would prevent the concrete plug from 

slipping out (or popping-out) during lateral loads imposed by earthquakes. Others have proposed 

details in which the concrete plug is held in place either by natural roughness of the inside 

surface of the steel shell or use of weld-metal laid on the inside of the steel shell in a continuous 

spiral in the connection region prior to placing the concrete plug (Ferritto et al., 1999). The 

dowels are then embedded in the concrete deck to provide sufficient development length. A 

small gap may or may not be provided between top of the pile and top of the concrete plug. This 

concrete-plug connection has been shown to provide remarkable ductility capacity of hollow 

steel piles (Priestley and Park, 1984; Park et al., 1987). The force transfer mechanism between 

the steel pile and the concrete plug has also been investigated by Nezamian et al. (2006). 
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Figure 8.1. Concrete-plug connection between hollow steel pile and concrete deck. 

8.1.2 Prestressed Concrete Piles 

Figure 8.2 shows details of the connections between a prestressed pile and the concrete deck of a 

Marine Oil or LNG Terminal (Klusmeyer and Harn, 2004; Wray et al., 2007; Roeder et al., 

2005). Prestressed piles typically have corrugated metal sleeves that are embedded in the 

concrete. These sleeves are located inside of the confined concrete core formed by the 

prestressing strands and confining steel. Once the prestressed pile has been driven to the desired 

depth, the dowels are grouted into the sleeves. If higher flexibility of the connection is desired, a 

small portion of the dowel at the top of the pile may be wrapped in Teflon to ensure de-bonding 

between the dowel and the grout. The dowels are then embedded in the concrete deck to provide 

sufficient development length. Note that Figure 8.2 shows only two outermost dowels; the other 

dowels are not shown to preserve clarity in the figure.  
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Figure 8.2. Dowel-connection between prestressed concrete pile and concrete deck. 
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8.1.3 Behavior of Dowel-Connection 

While analyzing Marine Oil and LNG Terminal structures, nonlinear behavior of pile and 

connection is typically represented by moment-rotation relationships. The moment-rotation 

relationship is developed based on the assumption of a plane section remaining plane and a 

perfect bond between the steel reinforcing bars and concrete. For the concrete-plug connection 

between hollow steel piles and deck or the dowel-connection between a prestressed pile and 

deck; however, such assumptions may not be valid. In particular, the pile in a such connection 

rotates about a small area on compression side of the pile forming a gap between the top of the 

pile and the deck on the tension side of the pile (see Figure 8.3). This behavior is akin to the pile 

acting like a crowbar bearing on a small compression area. This behavior leads to de-bonding of 

the dowel (or strain penetration) on each side of the joint. Additional de-bonding may also occur 

in the dowel over the portion that is intentionally wrapped in Teflon.  

L
sp

 
Figure 8.3. Behavior of piles with concrete-plug or dowel-connection. 

8.2 MOMENT-ROTATION RELATIONSHIP OF DOWEL-CONNECTION 

Bob Harn and George Sheng of Berger/ABAM Engineers Inc recently proposed a simple 

analytical model for developing nonlinear moment-rotation behavior of concrete-plug 

connections for hollow steel piles (see Figure 8.4) or dowel-connections for prestressed piles (see 

Figure 8.5). For a selected value of the reinforcing bar yield stress, yf , concrete strength, '
cf , 

diameter and area of reinforcing bars, bid  and siA , respectively, bearing strength of deck 

concrete against pile concrete as ' '1.7m cf f= , and bearing strength of deck concrete against steel 

shell of hollow steel pile as ' '5.6m cf f= , the moment-rotation relationship is developed as 
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follows:   

1. Select a value of strain in the outermost dowel on the tension side, 1ε . Typically the first 

strain value is selected as the yield strain in steel, ε y . 

2. Establish the location of the neutral axis of the section by the following iterative procedure: 

2.1. Guess the location of the neutral axis. 

2.2. Calculate strains in all dowels. 

2.3. Calculate forces in all dowels, iT . Note that dowel forces would be tensile on the 

tension side of the neutral axis and compressive on the compression side of the neutral 

axis. 

2.4. Calculate compressive force, cC , in concrete on compression side of the neutral axis. 

2.5. Calculate compressive force, sC , due to bearing of steel shell against the deck for 

hollow steel piles. Note that this step would not be necessary for prestressed concrete 

piles. 

2.6. Check that summation of all forces, including any axial force on the pile, is equal to 

zero. 

2.7. Repeat Steps 2.1 to 2.6 until summation of forces in Step 2.6 is essentially equal to zero. 

3. Estimate the length of strain-penetration in the dowel: 0.15= +sp s b dbL f d L  in which sf  is the 

allowable dowel stress in units of ksi, bd  is the dowel diameter in inches, and dbL  is the 

length of de-bonded reinforcing bar (as may be the case for prestressed concrete piles). 

Alternatively, the strain penetration length may be selected as 5= +sp b dbL d L  or as per the 

recommendations by Raynor et al. (2002). 

4. Compute the elongation of the outermost dowel: 1 1 spL LεΔ = . 

5. Compute the rotation of the concrete-plug connection: 1 1L Yθ = Δ  in which 1Y  is the distance 

between the neutral axis and the outermost dowel on the tension side of the neutral axis. 

6. Compute the moment, M , as the summation of moments at the center of the pile due to 

tensile as well as compressive forces. 

7. Repeat Steps 1 to 6 to develop the entire moment-rotation relationship of the connection. 

8. Idealize the moment-rotation relationship by using a bi-linear curve. 
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Figure 8.4. Analytical model to generate the moment-rotation relationship of the concrete-plug 
connection between a hollow steel pile and a concrete deck. 

Figures 8.6 and 8.7 show the moment rotation relationship of the concrete-plug connection 

for a hollow steel pile, a dowel connection and for a prestressed concrete pile, respectively. The 

nonlinear moment-rotation relationship (shown in solid line) has been idealized by a bilinear 

moment-rotation relationship (shown in dashed line). It is apparent from these results that the 

post-yield slope of the moment-rotation relationship is very small compared to the slope in the 

linear-elastic portion. Therefore, it may be possible to simply idealize this curve with an elastic-

perfectly-plastic curve without much loss in accuracy.  
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Figure 8.5. Analytical model to generate the moment-rotation relationship of a dowel connection 
between a prestressed concrete pile and a concrete deck. 
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Figure 8.6. Moment-rotation relationship of a concrete-plug connection for hollow steel piles. 
The results are for a steel pile of 61 cm diameter, 1.27 cm wall thickness, axial load of 0.05 yf A , 
and 8 dowels each with an area of 8.2 cm2. 
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Figure 8.7. Moment-rotation relationship of a dowel connection for prestressed concrete piles. 
The results are for a steel pile of 61 cm diameter pile, axial load of '0.05 cf A , 8 dowels each with 
an area of 3.9 cm2, and de-bonded length of reinforcing bars equal to 30 cm. 
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9. SIMPLIFIED MODEL OF PILE WITH DOWEL-CONNECTION 

A hollow steel pile with a concrete-plug connection or a prestressed pile with a dowel connection 

to the deck may be idealized as a beam-column element fixed at the base and a rotational spring 

at the top (Figure 9.1). The length of the element is equal to the free-standing height of the pile 

plus the depth of fixity below the mud-line. This length is selected as the length of a fixed-base 

cantilever that would have same lateral displacement at the pile top as the actual pile (see 

Priestley at al., 1996; Chai, 2002). The rotational spring at the top of the pile represents the 

nonlinear behavior of the concrete-plug or the dowel connection. Ignoring axial deformations in 

the pile, this system can be modeled with two displacement degrees-of-freedom: lateral 

displacement, Δ , and rotation, θ , at the top. When a lateral force, F , is applied at the top of the 

pile, a moment, M , also develops at the top due to the rotational resistance provided by the 

rotational spring representing the concrete-plug or the dowel connection. Note that the rotation in 

the rotational springs is equal to rotation at top of the pile. 

L

Δ θ

M F

 
Figure 9.1. Simplified model of the pile with partial-moment connection to the deck. 

Presented in this chapter is the development of a simplified procedure for estimating the 

displacement capacity of hollow steel piles with concrete-plugs or prestressed piles with dowel 

connections at the deck without the need to monitor strains during the pushover analysis. In 

particular, formulas for estimating displacement capacity of such piles are developed. 

9.1 IDEALIZED CONNECTION AND PILE BEHAVIOR 

9.1.1 Moment-Rotation Behavior of Connection 

The moment-rotation relationship for the concrete-plug or dowel connection between the pile 
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and the deck may be idealized as a bilinear (elastic-perfectly-plastic) curve (Figure 9.2). The 

initial elastic stiffness and yield moment of the partial-moment-connection are defined by kθ  and 

,CyM , respectively. If Lθ  is the rotation in the rotational spring when the strain in the outermost 

dowel of the concrete-plug connection for hollow steel piles or the dowel connection in 

prestressed concrete piles just reaches the strain limit specified for a selected design level, the 

rotational ductility of the connection at specified strain limits is defined by 
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Figure 9.2. Idealized moment-rotation relationship of the dowel-connection. 

9.1.2 Moment-Curvature Behavior of Pile Section 

The moment-curvature relationship of the pile section can also be idealized as a bilinear curve 

(Figure 9.3). The initial slope of this curve is equal to EI  and post-yield slope is equal to EIα  

in which α  is the ratio of the post-yield slope and initial slope of the curve. The moment and 

curvature at effective yielding of the pile are ,PyM  and yφ , respectively. Note that the effective 

yield moment, ,PyM , of the pile section in the idealized bi-linear moment-curvature relationship 

differs slightly from the yield moment at initiation of first yielding in the outermost fiber of the 

hollow steel pile or outermost strand of the prestressed concrete pile. While the ,PyM  for 

prestressed concrete piles should be estimated from the moment-curvature relationship, ,PyM  for 
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hollow steel piles may be estimated from the formula for its plastic moment capacity as  
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If Lφ  is the curvature of the pile section when the material strain just reaches the strain limit 

specified for a selected design level, the pile section curvature ductility is defined as  
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Figure 9.3. Idealized moment-curvature relationship of the pile section. 

9.1.3 Force-Deformation Relationship of Pile with Dowel-Connection 

The force-deformation behavior (or pushover curve) of a pile with fixed-base and a rotational 

spring at the top may be idealized by a tri-linear relationship shown in Figure 9.3. For piles with 

dowel-connections to the deck, the yield moment of the connection is typically selected to be 

smaller than the yield moment of the pile section. For such a condition, the first yielding in the 

pile system would occur in the connection at lateral force and displacement equal to ,CyF  and 

,CyΔ , respectively. Since the pile has not yet reached its yield moment, the lateral force in the 

pile system would continue to increase with displacement until yielding occurs in the steel pile at 

force and displacement equal to ,PyF  and ,PyΔ , respectively. Subsequently, the lateral force in the 

pile system would increase with displacement only due to strain-hardening effects in the pile 
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material. 
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Figure 9.4. Idealized pushover curve of pile with dowel-connection to the deck. 

9.2 FORCE-DEFORMATION RESPONSE OF PILE WITH DOWEL-CONNECTION 

This section presents development of formulas for estimating displacement capacity of piles with 

dowel connections to the deck. For this purpose let us define two dimensionless constants, η  and 

β  as 

 ,P

,C

y

y

M
M

η =  (9.4) 

 
EI
k Lθ

β =  (9.5) 

in which η  is the ratio of yield moment of the pile and the connection, and β  is indicative of the 

relative rotational stiffness of the pile and the connection. 

9.2.1 Response at First Yielding in Connection 

To compute the rotation and deflection at the top of the hollow steel pile with a concrete-plug in 

the initial elastic region, i.e., ,CyΔ ≤ Δ , consider the cantilever with a moment equal to kθθ  and a 

lateral force equal to F  at the top (Figure 9.5(a)) with a bending moment diagram (Figure 

9.5(b)) and the curvature diagram (Figure 9.5(c)). Using the moment-area method for structural 
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analysis, the rotation and deflection at the top of the pile are given by 
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and 
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Equation (9.6) can be further simplified to obtain the rotation as 
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 (9.8) 

Utilizing Equation (9.8), Equation (9.7) can also be simplified to obtain the deflection as  
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 (9.9) 

The first yielding in the pushover curve (Figure 9.4) occurs at the yielding of the connection 

at yield rotation at the top of the pile equal to 

 ,C
,C

y
y

M
kθ

θ =  (9.10) 

Inserting Equation (9.10) in Equation (9.8) gives the lateral force at the yield level as 

 ( ),C
,C

2
1y

y

M
F

L
β= +  (9.11) 

and utilizing Equation (9.11) in Equation (9.9) gives the yield displacement as 

 ( ) ( )
2 2

,C ,C
,C ,C

1 41 4 1 4
6 6

y y
y y

M L k L
L

EI EI
θθ ββ β θ

β
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 (9.12) 
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Figure 9.5. Response behavior of a pile with dowel-connection up to yielding in the connection: 
(a) forces; (b) bending moment diagram; and (c) curvature diagram. 

9.2.2 Response at First Yielding in Pile 

The response in the range ,C ,Py yΔ ≤ Δ ≤ Δ  may be computed by an incremental approach in 

which the system may be treated as a cantilever fixed at the base and free at the top (Figure 9.6). 

For this system, the incremental displacement and rotation at the top are given by 

 ( ) ( )
3

,C ,C3y y
L F F
EI

Δ −Δ = −  (9.13) 

 ( ) ( )
2

,C ,C2y y
L F F
EI

θ θ− = −  (9.14) 

which leads to the expression for the total displacement and rotation as 

 ( ) ( ) ( )
23 3

,C
,C ,C ,C1 4

3 6 3
y

y y y

M LL LF F F F
EI EI EI

βΔ = Δ + − = + + −  (9.15) 

 ( ) ( )
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y
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Figure 9.6. Response behavior of a pile with dowel-connection between yielding in the 
connection and yielding in the pile: (a) forces; (b) bending moment diagram; (c) curvature 
diagram; and (d) equilibrium at pile yielding. 

The lateral force when the pile yields can be computed from the equilibrium of the 

cantilever (Figure 9.6(d)) as 

 ,C ,P
,P L

y y
y

M M
F

+
=  (9.17) 

Utilizing Equation (9.17) in Equations (9.15) and (9.16) leads to displacement and rotation at 

yielding of the pile as 
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9.3 DISPLACEMENT DUCTILITY CAPACITY OF PILE 

This section develops the formulas for computing displacement ductility capacity of piles with a 
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partial-moment connection. Presented first are the formulas for the ductility controlled by 

material strain limits in the connection. Subsequently, formulas for the ductility controlled by 

material strains in the pile section are presented. The displacement ductility capacity is then 

defined as the lower of the two ductility values. Finally, a step-by-step summary to compute the 

displacement ductility capacity of piles with partial-moment connection is presented. 

9.3.1 Strain Limits in the Connection 

Let Lθ  be the rotation in the connection spring for a selected design level, i.e., specified value of 

strain in the outermost dowel for a selected design level. For the pile-connection system, this 

rotation may occur either prior to pile yielding, i.e., ,C ,Py L yθ θ θ< < , or after pile yielding, i.e., 

,PL yθ θ> . The connection rotation ductility at onset of pile yielding is given by 
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 (9.20) 

The displacement capacity of the pile-connection system when considering strain limits in 

the outermost dowel of the connection depends on whether the pile remains elastic or the pile 

yields when the dowel strain limit is reached. Note that the pile would remain elastic if θμ  is less 

than ,Pθμ  as given by Equation (9.20). If the pile remains elastic, the rotation in the plug at a 

selected design level, Lθ , is related to the lateral force F  by Equation (9.16) as 

 ( )
2

,C ,C2L y y
L F F
EI

θ θ= + −  (9.21) 

which gives 

 ( ) ( ) ( ),C ,C ,C2 2

2 21y L y y
EI EIF F
L Lθθ θ θ μ⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (9.22) 

Using Equation (9.15), the displacement is then given as 
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The displacement ductility capacity is then defined as 
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 (9.24) 

If the pile yields prior to the connection reaching Lθ , i.e., if θμ  is more than ,Pθμ , the 

deflection at the pile top can be approximated as 

 ( ),P ,PL y L y Lθ θΔ = Δ + −  (9.25) 

which can be re-written as 
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 (9.26) 

The displacement ductility capacity is then defined as  
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 (9.27) 

The displacement ductility capacity of the pile-concrete-plug system can be summarized as 
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 (9.28) 

Equation (9.28) applies only for displacement ductility capacity when the strain in the outermost 

fiber of the dowel in the connection reaches the strain limit for a selected design level.  

9.3.2 Strain Limits in the Pile 

The preceding section developed the expression for displacement ductility capacity of the pile-

connection system controlled by the strain limit in the dowel of the connection. However, it is 

possible that the strain limit in the pile may occur prior to the system reaching the displacement-

ductility capacity given by Equation (9.28). Therefore, the relationship for displacement-ductility 

of the pile-connection system at strain limits in the pile is developed next. 

Let us consider the equilibrium of the pile when the strain limit reaches the limiting value at 

a selected design level (Figure 9.7). The moment at the top of the pile is equal to ,CyM  and at the 

bottom is equal to ,PyM . The length 2L  is then given by 

 2 1
L Lη

η
=

+
 (9.29) 
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Figure 9.7. Equilibrium of the pile when strain reaches the limiting value in the pile-hinge. 
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Defining the plastic hinge length as  

 2pL Lρ=  (9.30) 

in which ρ  is the length of the plastic hinge as a fraction of the “effective” length defined as the 

distance from the critical section to the point of contra-flexure (= 2L  for this case). Using 

Equation (9.29) in Equation (9.30) gives a plastic hinge length normalized by the total pile length 

as 

 *

1
p

p

L
L

L
ρη
η

= =
+

 (9.31) 

Using concepts similar to those developed previously for piles with perfect moment connection 

[see Figure 4.1 and Equation (4.4)], the displacement capacity of the pile is given by 

 

( )

( )( )

( )( )

,P

*
2 *

,P

2 *
,P *

,P

2

1 1
2

1 1
2

p
L y p L y

p
y y p

y p
y p

L
L L

L
L L

M L L
L

EI

φ

φ

φ φ

φ μ

μ

⎛ ⎞ ⎡ ⎤Δ = Δ + − −⎜ ⎟ ⎣ ⎦⎝ ⎠
⎛ ⎞

= Δ + − −⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
= Δ + − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 (9.32) 

Dividing Equation (9.32) by the yield displacement given by Equation (9.12), the displacement-

ductility capacity is given by 
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 (9.33) 

Equation (9.33) applies only to the displacement ductility capacity when the material strain in the 

pile reaches the strain limit for a selected design level. i.e., hinging in the pile.  

9.4 STEP-BY-STEP SUMMARY 

The following is a step-by-step summary of the procedure to compute the displacement capacity 

of hollow steel piles with concrete-plug connections or prestressed concrete piles with a dowel 
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connection at the deck. 

1. Establish the axial load, P , on the pile. 

2. Estimate the pile length based on an equivalent-fixity assumption. 

3. Select an appropriate design level – Level 1 or Level 2 – and establish various strain limits 

for the selected design level. 

4. Develop the moment-rotation relationship of the concrete-plug connection for a hollow steel 

pile or the dowel connection for a prestressed concrete pile using the procedure described in 

Chapter 8 (Section 8.2) of this report. 

5. Determine rotational stiffness, kθ , yield moment, ,CyM , and yield rotation, ,Cyθ  of the 

connection from the moment-rotation relationship developed in Step 4. 

6. Establish the rotation of the plug, Lθ , and corresponding ductility, ,CL yθμ θ θ= , when strain 

in the outer-most dowel of the connection reaches the strain limit established in Step 3 for the 

selected design level.  

7. Conduct the moment-curvature analysis of the pile section and idealize the moment-

curvature relationship by a bi-linear curve. For this analysis, apply the axial load on the pile 

prior to moment-curvature analysis. 

8. Compute the effective, eEI , and effective yield moment, y,PM , from the pile moment-

curvature relationship. Note that eEI  is equal to the initial elastic slope and y,PM  is the yield 

value of the moment of the idealized bi-linear moment-curvature relationship. For steel piles, 

EI  may be computed from section properties and material modulus, and y,PM  may be 

approximated as ( )3 3
y,P 6y o iM f d d= − .  

9. Estimate the yield curvature, ,P ,Py y eM EIφ = . 

10. Establish the curvature of the steel pile, Lφ , and corresponding curvature ductility, 

,PL yφμ φ φ= , when material strain in the pile section reaches the strain limit established in 

Step 3 for the selected design level. 
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11. Select the value of ρ  which defines the length of the plastic hinge as a fraction of the 

“effective: length of the pile. Guidelines for selection values of ρ  for hollow steel piles and 

prestressed concrete piles are provided in subsequent Chapters of this report. 

12. Compute the dimensionless parameters: ,P ,Cy yM Mη = , and eEI k Lθβ = . 

13. Compute the normalized value of the plastic hinge length: ( ) ( )* 1PL ρη η= + . 

14. Compute the yield displacement which corresponds to first effective yielding in the 

connection as: ( ),C ,C 1 4y y Lθ β βΔ = + 6  

15. Compute the displacement ductility for yielding in the connection as 

( ) ( )1 4 1 4θμ βμ βΔ = + +  if θμ  computed in Step 6 is less than or equal to ( )1 2η β−  

otherwise ( ) ( )2 6 1 4θμ η βμ βΔ = − + + . 

16. Compute displacement ductility for yielding in the pile as 

( ) ( ) ( )( )( ) ( )* *2 1 1 4 6 1 2 1 1 4p pL L φμ η β η μ βΔ = − + + − − +  

17. Establish the displacement ductility capacity as the lower of the values computed in Steps 15 

and 16. 

18. Compute the displacement capacity of the pile as a product of the yield displacement 

computed in Step14 and the displacement ductility capacity computed in Step 17. 
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10. DUCTILITY CAPACITY OF HOLLOW STEEL PILES WITH DOWEL-

CONNECTION  

The displacement ductility capacity of hollow steel piles with a dowel-connection to the deck is 

investigated in this chapter. For this purpose, two design levels – Level 1 and Level 2 – specified 

for seismic analysis of Marine Oil and LNG Terminals in the MOTEMS are considered. The 

strain limits specified in the MOTEMS for reinforcing steel are 0.01 for Level 1 and 0.05 for 

Level 2 if the hinge were to form in the connection. If the hinge were to form in the steel pile 

below the ground level, these strain limits are 0.008 for Level 1 and 0.025 for Level 2. Two pile 

diameters – 61 cm and 91 cm – each with two wall thicknesses – 1.27 cm inch and 2.54 cm – are 

considered. Furthermore, two configurations of reinforcing details in the concrete-plug 

connection are considered: 8 dowels and 12 dowels, with area of each dowel being equal to 8.2 

cm2. The piles are considered to be fixed at the bottom to reflect the equivalent-fixity assumption 

at the bottom. The axial load on the pile is assumed to be 0.05 yAf  or 0.1 yAf  in which A  is the 

cross-section area of the pile and yf  is the yield strength of steel. The pile is modeled in 

computer program OPENSEES (McKenna and Fenves, 2001) using fiber section and nonlinear 

beam-column elements. 

Figures 10.1 to 10.4 present the variation of displacement ductility capacity of hollow-steel 

piles with concrete-plug connections with pile length for two conditions: (1) formation of hinge 

in the concrete-plug connection and (2) formation of hinge in the steel pile. These results were 

generated by nonlinear-finite element analysis of the pile system shown in Figure 9.1. The 

presented results indicate that the ductility capacity due to pile hinging tends to increase slightly 

with pile length for shorter piles. For longer piles, however, the ductility capacity is essentially 

independent of the pile length as apparent from the almost-flat curves. The ductility capacity due 

to concrete-plug hinging, however, reduces significantly with pile length. However, this ductility 

capacity may become insensitive to the pile length for longer piles. 

The design ductility capacity of hollow steel piles with concrete plugs is lower for the 

ductility capacities due to hinging in the steel pile and in the concrete plug. Therefore, the results 

of Figures 10.1 to 10.4 also permit another important observation: hinging in the steel pile may 

control the design ductility capacity of shorter piles whereas hinging in concrete-plug almost 

always controls the design ductility capacity of longer piles. As such, for a given pile length, the 
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lower of the ductility capacity from hinging in the pile and hinging in the connection must be 

selected as the design ductility capacity. 
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Figure 10.1. Displacement ductility capacity of hollow-steel piles with concrete-plug connections 
for a design Level 1 earthquake and a 61 cm pile diameter. Variables include axial load, pile 
thickness and number of dowels. 
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Figure 10.2. Displacement ductility capacity of hollow-steel piles with concrete-plug connections 
for a design Level 1 earthquake and 91 cm pile diameter. Variables include axial load, pile 
thickness and number of dowels.  



 

 64

0

5

10

15

20

25

30
μ Δ2

T = 1.27 cm; P = 0.05 Af
y8 Dowels

T = 1.27 cm; P = 0.1 Af
y8 Dowels

T = 2.54 cm; P = 0.05 Af
y8 Dowels

T = 2.54 cm; P = 0.1 Af
y8 Dowels

0 10 20 30 40 50
0

5

10

15

20

25

30

μ Δ2

Pile Length, m

Hinge Location
Pile
Connection

T = 1.27 cm; P = 0.05 Af
y12 Dowels

0 10 20 30 40 50
Pile Length, m

T = 1.27 cm; P = 0.1 Af
y12 Dowels

0 10 20 30 40 50
Pile Length, m

T = 2.54 cm; P = 0.05 Af
y12 Dowels

0 10 20 30 40 50
Pile Length, m

T = 2.54 cm; P = 0.1 Af
y12 Dowels

 
Figure 10.3. Displacement ductility capacity of hollow-steel piles with concrete-plug connections 
for a design Level 2 earthquake and 61 cm pile diameter. Variables include axial load, pile 
thickness and number of dowels.  

0

5

10

15

20

25

30

μ Δ2

T = 1.27 cm; P = 0.05 Af
y8 Dowels

T = 1.27 cm; P = 0.1 Af
y8 Dowels

T = 2.54 cm; P = 0.05 Af
y8 Dowels

T = 2.54 cm; P = 0.1 Af
y8 Dowels

0 10 20 30 40 50
0

5

10

15

20

25

30

μ Δ2

Pile Length, m

Hinge Location
Pile
Connection

T = 1.27 cm; P = 0.05 Af
y12 Dowels

0 10 20 30 40 50
Pile Length, m

T = 1.27 cm; P = 0.1 Af
y12 Dowels

0 10 20 30 40 50
Pile Length, m

T = 2.54 cm; P = 0.05 Af
y12 Dowels

0 10 20 30 40 50
Pile Length, m

T = 2.54 cm; P = 0.1 Af
y12 Dowels

 
Figure 10.4. Displacement ductility capacity of hollow-steel piles with concrete-plug connections 
for a design Level 2 earthquake and 91 cm pile diameter. Variables include axial load, pile 
thickness and number of dowels.  

The accuracy of the formulas developed in Chapter 9 are examined next by comparing 

design ductility capacity from nonlinear finite element analysis (NFEA) with that from Equations 

(9.29) and (9.33). Note that the results presented are the higher of the ductility values due to 
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hinging in the pile and the connection. The value of 0.03ρ =  for Level 1 earthquake design and 

0.075ρ =  for Level 2 earthquake design has been selected for hollow steel piles. These values 

must be used in estimating the ductility capacity from Equation (9.33). The presented results in 

Figures 10.5 and 10.6 are for a Level 1 earthquake, Figures 10.7 and 10.8 are for a Level 2 

earthquake and they indicate that the formulas developed in this investigation provide highly 

accurate estimates of displacement ductility capacity of hollow steel piles with concrete-plug 

connection.  
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Figure 10.5. Comparison of design displacement ductility capacity of hollow-steel piles with 
concrete-plug connections from Equations (9.29) and (9.33), and nonlinear finite element 
analysis (NLFEA); results are for piles with 61 cm diameter and a design Level 1 earthquake. 
Variables include axial load, pile thickness and number of dowels. 
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Figure 10.6. Comparison of design displacement ductility capacity of hollow-steel piles with 
concrete-plug connections from Equations (9.29) and (9.33), and nonlinear finite element 
analysis (NLFEA); results are for piles with 91 cm diameter and a design Level 1 earthquake. 
Variables include axial load, pile thickness and number of dowels. 
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Figure 10.7. Comparison of design displacement ductility capacity of hollow-steel piles with 
concrete-plug connections from Equations (9.29) and (9.33), and nonlinear finite element 
analysis (NLFEA); results are for piles with 61 cm diameter and a design Level 2 earthquake. 
Variables include axial load, pile thickness and number of dowels. 
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Figure 10.8. Comparison of design displacement ductility capacity of hollow-steel piles with 
concrete-plug connections from Equations (9.29) and (9.33), and nonlinear finite element 
analysis (NLFEA); results are for piles with 91 cm diameter and a design Level 2 earthquake. 
Variables include axial load, pile thickness and number of dowels. 

 

11. DUCTILITY CAPACITY OF PRESTRESSED CONCRETE PILES WITH DOWEL-

CONNECTION 

The displacement ductility capacity of prestressed concrete piles with dowel connections to the 

deck is investigated in this chapter. For this purpose, two design levels – Level 1 and Level 2 – 

specified for seismic analysis of Marine Oil and LNG Terminals are considered. The strain limits 

specified in the MOTEMS for reinforcing steel are 0.01 for Level 1 and 0.05 for Level 2 if the 

hinge were to form in the connection. If the hinge were to form in the pile, the strain limits in the 

prestressing strand are 0.005 (total) for Level 1 and 0.015 (incremental) for Level 2. The results 

are generated for a pile diameter of 61 cm with 16 prestressing strands. The area of each 

prestressing strand is equal to 1.4 cm2, strength is 1884 MPa, and initial prestress in the strands is 

equal to 70% of its strength. The confinement is provided by #11 spiral wire (area = 0.71 cm2) 

with spacing equal to 6.3 cm. The dowel connection consists of 8 bars, each with an area equal to 

3.9 cm2. The piles are considered to be fixed at the bottom to reflect the equivalent-fixity 

assumption at that point. The axial load on the pile is assumed to be '0.05 cAf  in which A  is the 

cross-section area of the pile and '
cf  is the compressive strength of concrete. Four values of the 
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de-bonded length of the bars in the dowel connection are considered: 0 cm, 30 cm, 61 cm, and 91 

cm. The pile is modeled in computer program OPENSEES (McKenna and Fenves, 2001) using 

fiber section and nonlinear beam-column elements. 

Figures 11.1 and 11.2 compare the ductility of prestressed concrete piles with a dowel 

connection due to the formation of a hinge in the pile from nonlinear finite element analysis 

(NLFEA) and from Equation (9.33). Note that a value of 0.05ρ =  has been used for both design 

levels. These results show that Equation (9.33) provides results for Level 1 design that are almost 

identical to those from the NLFEA (Figure 10.1). For Level 2 design, Equation (9.33) provides 

results that are almost identical to those from the NLFEA for longer piles but provide a lower 

bound for very short piles (Figure 11.2).  

Figures 11.3 and 11.4 compare the ductility of prestressed concrete piles with a dowel 

connection due to the formation of a hinge in the connection from nonlinear finite element 

analysis (NLFEA) and from Equation (9.29). These results show that Equation (9.29) provides 

results that are almost identical to those from the NLFEA. 
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Figure 11.1. Comparison of displacement ductility of prestressed concrete piles with dowel 
connections due to the formation of a hinge in the piles from nonlinear finite element analysis 
(NLFEA) and from Equation (9.33). Results are for design Level 1 earthquake. SL = de-bond 
length. 
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Figure 11.2. Comparison of displacement ductility of prestressed concrete piles with dowel 
connections due to the formation of a hinge in the piles from nonlinear finite element analysis 
(NLFEA) and from Equation (9.33): results are for design Level 2 earthquake. SL = de-bond 
length. 
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Figure 11.3. Comparison of displacement ductility of prestressed concrete piles with dowel 
connections due to the formation of a hinge in the connection from nonlinear finite element 
analysis (NLFEA) and from Equation (9.33). Results are for a design Level 1 earthquake. SL = 
de-bond length. 
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Figure 11.4. Comparison of displacement ductility of prestressed concrete piles with dowel 
connections due to the formation of a hinge in the connection from nonlinear finite element 
analysis (NLFEA) and from Equation (9.33). Results are for a design Level 2 earthquake. SL = 
de-bond length. 

 

Figures 11.5 and 11.6 compare the displacement ductility capacity of prestressed concrete 

piles with dowel connections, defined as lower of the ductility due to the formation of a hinge in 

the pile or the formation of a hinge in the connection, from nonlinear finite element analysis 

(NLFEA) and Equation (9.33). These results show that the formulas developed in this 

investigation provide results that match well with those from the NLFEA. 
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Figure 11.5. Comparison of displacement ductility capacity of prestressed concrete piles with 
dowel connections, defined as the lower of the ductility due to the formation of a hinge in the 
pile or the formation of a hinge in the connection, from nonlinear finite element analysis 
(NLFEA) and from Equation (9.33). Results are for a design Level 1 earthquake. SL = de-bond 
length. 
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Figure 11.6. Comparison of displacement ductility capacity of prestressed concrete piles with 
dowel connections, defined as the lower of the ductility due to the formation of a hinge in the 
pile or the formation of a hinge in the connection, from nonlinear finite element analysis 
(NLFEA) and from Equation (9.33). Results are for a design Level 2 earthquake. SL= de-bond 
length. 
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12. RECOMMENDATIONS 

The following simplified procedures are recommended for estimating seismic displacement 

demand and capacity of pile in Marine Oil and LNG Terminals. The seismic displacement 

capacity recommended here is consistent with the strain limits specified in the MOTEMS.  

12.1 DISPLACEMENT DEMAND 

12.1.1 Regular Structures 

It is recommended that the seismic displacement demand in a regular structure (MOTEMS 2007) 

be estimated from the following procedure that was recently proposed in the ASCE/SEI 41-06 

standard: 

 
2

1 2 24d A
TC C S
π

Δ =  (12.1) 

in which AS  is the spectral acceleration of the linear-elastic system at vibration period, T . The 

coefficient 1C  is given by 

 1 2

1.0;                          1.0s
11.0 ;     0.2s< 1.0s

11.0 ;            0.2s
0.04

T
RC T
aT
R T

a

⎧
⎪ >
⎪ −⎪= + ≤⎨
⎪

−⎪ + ≤⎪⎩
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in which a  is a site dependent constant equal to 130 for Site Class A and B, 90 for Site Class C, 

and 60 for Site Class D, E, and F (definition of Site Class is available in ASCE/SEI 41-06 

standard), and R  is the ratio of the elastic and yield strength of the system and is defined as 

 A

y

S WR
g V

=  (12.3) 

where W  is the seismic weight of the system, yV  is the yield force (or base shear) of the system, 

and g  is the acceleration due to gravity. The coefficient 2C  is given by 
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The estimation of displacement demand should be restricted to systems with  
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Δ

 (12.5) 

in which dΔ  is the smaller of the computed displacement demand, dΔ , or the displacement 

corresponding to the maximum strength in the pushover curve, yΔ  is the yield displacement of 

the idealized bilinear force-deformation curve, ( )1 0.15lnt T= + , and eα  is the effective post-

elastic stiffness ratio computed from 

 ( )2e P Pα α λ α α−Δ −Δ= + −  (12.6) 

where λ  is a near-field effect factor equal to 0.8 for sites that are subjected to near-field effects 

and 0.2 for sites that are not subjected to near field effects. The near field effects may be 

considered to exist if the 1 second spectral value, 1S , at the site for the maximum considered 

earthquake is equal to or exceeds 0.6g. The P-Delta stiffness ratio, Pα −Δ , and the maximum 

negative post-elastic stiffness ratio, 2α , are estimated from the idealized force-deformation 

curve. 

12.1.2 Irregular Structures 

The following modal pushover analysis (MPA) procedure is recommended to estimate 

displacement demands in irregular Marine Oil and LNG Terminal structures (MOTEMS 2007): 

1. Compute the natural frequencies, nω  and modes, nφ , for linearly elastic vibration of the 

irregular Marine Oil and LNG Terminal structure. 

2. Select a reference point where the displacement, rnu , is to be monitored in the selected 

direction of analysis during the pushover analysis. Ideally, this reference point should be the 

location on the structure with largest value of rnφ  in the selected direction of analysis. 
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3. For the nth-mode, develop the pushover curve, bn rnV u− , for the nth modal force distribution, 

*
n n= Ms φ , where M  is the mass matrix of the structure, and nφ  is the nth mode shape. The 

base shear bnV  should be monitored in the same direction as the direction of the selected 

reference point displacement rnu .  

4. Convert the bn rnV u−  pushover curve to the force-displacement, sn n nF L D− , relation for the 

nth -“mode” inelastic SDF system by utilizing *
sn n bn nF L V M=  and n rn n rnD u φ= Γ  in which 

rnφ  is the value of nφ  at the reference point in the direction under consideration, 

( )2* T T
n n n nM = M Mφ ι φ φ  is the effective modal mass, and T T

n n n nΓ = M Mφ ι φ φ  with ι  equal to 

the influence vector. The influence vector ι  is a vector of size equal to the total number of 

degrees of freedom. For analysis in the x-direction, the components of ι  corresponding to x-

degree-of-freedom are equal to one and remaining components equal to zero. Similarly the 

components of ι  corresponding to y-degree-of-freedom are equal to one and remaining 

components equal to zero for analysis in the y-direction. 

5. Idealize the force-displacement, sn n nF L D− , curve as a bilinear curve and compute the yield 

value sny nF L . 

6. Compute the yield strength reduction factor, ( )A sny nR S F L= . 

7. Compute the peak deformation n dD = Δ  of the nth-“mode” inelastic SDF system defined by 

the force-deformation relation developed in Step 4 and damping ratio nζ , from Equation (1). 

The elastic vibration period of the system is based on the effective slope of the sn n nF L D−  

curve, which for a bilinear curve is given by ( )1/ 2
2n n ny snyT L D Fπ= . 

8. Calculate peak reference point displacement rnu  associated with the nth-“mode” inelastic 

SDF system from rn n rn nu Dφ= Γ . 

9. Push the structure to the reference point displacement equal to rnu  and note the values of 

desired displacement noδ . 
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10. Repeat Steps 3 to 9 for all significant modes identified. 

11. Combine the peak modal displacement, noδ , by an appropriate modal combination rule, e.g., 

CQC, to obtain the peak dynamic response, oΔ . 

12.2 DISPLACEMENT CAPACITY 

It is recommended that the displacement capacity of piles in Marine Oil and LNG Terminals be 

estimated from  

 c yμΔΔ = Δ  (12.7) 

where yΔ  is the yield displacement of the pile and μΔ  is the displacement ductility capacity of 

the pile.  

The procedure to estimate the displacement capacity is intended to be a simplified procedure 

for either initial design of piles or for checking results from more complex nonlinear finite 

element analysis. The recommendations presented here are limited to: (1) piles with long 

freestanding heights (length/diameter > 20) above the mud line; (2) piles with transverse 

volumetric ratio greater than 0.5%; and (3) piles in which the displacement demand has been 

estimated utilizing equivalent-fixity approximation. Results form this investigation should be 

used with caution for parameters or cases outside of those described above. 

12.2.1 Piles with Full-Moment- or Pin-Connection to the Deck Slab 

The recommended values of displacement ductility capacity of piles with full-moment-

connection or pin-connection to the deck slab are  

Design Earthquake 
Level 

Hinge Location Reinforced-
Concrete Piles 

Hollow-Steel 
Piles 

In-Ground 1.75  1.2 
Level 1 

Pile-Deck 1.75  1.2 

In-Ground 2.5 2.75 
Level 2 

Pile-Deck 5.0 2.75 
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The yield displacement of the pile may be estimated either from idealized pushover curve 

developed from the nonlinear static pushover analysis or may be estimated from 
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for full-moment-connection
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3

y

e
y

y

e

M L
EI

M L
EI

⎧
⎪
⎪Δ = ⎨
⎪
⎪
⎩

 (12.8) 

in which yM  is the section yield moment and eEI  is the effective value of EI . Note that yM  is 

not the section moment at first-yield but the effective yield moment estimated from bilinear 

idealization of the moment-curvature relationship. 

12.2.2 Piles with Dowel-Connection to the Deck Slab 

The following procedure is recommended for estimating displacement ductility capacity of piles 

with dowel-connection, such as hollow-steel piles or prestressed concrete piles connected to the 

deck slab with dowels:  

1. Establish the axial load, P , on the pile. 

2. Estimate the pile length based on equivalent-fixity assumption. 

3. Select an appropriate design level – Level 1 or Level 2 – and establish various strain limits 

for the selected design level. 

4. Develop the moment-rotation relationship of the dowel-connection using the procedure 

described in Chapter 8 of this report. 

5. Determine rotational stiffness, kθ , yield moment, ,CyM , and yield rotation, ,Cyθ  of the 

dowel-connection from the moment-rotation relationship developed in Step 4. 

6. Establish the rotation of the dowel-connection, Lθ , and corresponding ductility, 

,CL yθμ θ θ= , when strain in the outer-most dowel of the connection reaches the strain limit 

established in Step 3 for the selected design level.  

7. Conduct the moment-curvature analysis of the pile section with appropriate axial load and 

idealize the moment-curvature relationship by a bi-linear curve.  
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8. Compute the effective, eEI , and effective yield moment, y,PM , from the pile moment-

curvature relationship. Note that eEI  is equal to initial elastic slope and y,PM  is the yield 

value of the moment of the idealized bi-linear moment-curvature relationship. For steel piles, 

eEI  may be computed from section properties and material modulus, and y,PM  may be 

approximated as ( )3 3
y,P 6y o iM f d d− .  

9. Estimate the yield curvature, ,P ,P eEIy yMφ = . 

10. Establish the curvature of the steel pile, Lφ , and corresponding curvature ductility, 

,PL yφμ φ φ= , when material strain in the pile section reaches the strain limit established in 

Step 3 for the selected design level. 

11. Select the value of ρ  which defines the length of the plastic hinge as a fraction of the 

“effective” length of the pile. The recommended value for hollow-steel piles with dowel-

connection is 0.03ρ =  for Level 1 design and 0.075ρ =  for Level 2; and for prestressed 

concrete pile with dowel-connection for both design levels is 0.05ρ = . 

12. Compute the dimensionless parameters: ,P ,Cy yM Mη = , and eEI k Lθβ = . 

13. Compute the normalized value of the plastic hinge length: ( ) ( )* 1PL ρη η= + . 

14. Compute the yield displacement which corresponds to first effective yielding in the 

connection as: ( ),C ,C 1 4y y Lθ β βΔ = + 6  

15. Compute the displacement ductility for yielding in the connection as 

( ) ( )1 4 1 4θμ βμ βΔ = + +  if θμ  computed in Step 6 is less than or equal to ( )1 2η β−  

otherwise ( ) ( )2 6 1 4θμ η βμ βΔ = − + + . 

16. Compute displacement ductility for yielding in the pile as 

( ) ( ) ( )( )( ) ( )* *2 1 1 4 6 1 2 1 1 4p pL L φμ η β η μ βΔ = − + + − − +  

17. Establish the displacement ductility capacity as lower of the values computed in Steps 15 and 

16. 
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18. Compute the displacement capacity of the pile as product of the yield displacement computed 

in Step14 and the displacement ductility capacity computed in Step 17. 

12.3 RECOMMENDATIONS FOR FUTURE WORK 

The recommendations developed in this report are based on analytical simulations of piles 

fixed at the base at a depth equal to depth-of-fixity below the mud line. In order to develop 

further confidence in these results, the following recommendations are provided for future work: 

1. Verify the displacement ductility values for various seismic design levels from laboratory 

experiments conducted at displacement values appropriate for these design levels. 

2. Verify the recommended values of plastic hinge lengths for various seismic design levels 

from laboratory experiments conducted at displacement values appropriate for these design 

levels. 

3. Compare displacement capacity estimated from equivalent fixity model with those estimated 

from analysis of pile-soil system. 

4. The validity of using the same plastic hinge length for all seismic design levels in the 

concentrated plasticity model of hollow steel piles and possibly for reinforced-concrete piles 

should be verified.  
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